2,968 research outputs found
Fan-spine topology formation through two-step reconnection driven by twisted flux emergence
We address the formation of 3D nullpoint topologies in the solar corona by
combining Hinode/XRT observations of a small dynamic limb event, which occurred
beside a non-erupting prominence cavity, with a 3D zero-beta MHD simulation. To
this end, we model the boundary-driven kinematic emergence of a compact,
intense, and uniformly twisted flux tube into a potential field arcade that
overlies a weakly twisted coronal flux rope. The expansion of the emerging flux
in the corona gives rise to the formation of a nullpoint at the interface of
the emerging and the pre-existing fields. We unveil a two-step reconnection
process at the nullpoint that eventually yields the formation of a broad 3D
fan-spine configuration above the emerging bipole. The first reconnection
involves emerging fields and a set of large-scale arcade field lines. It
results in the launch of a torsional MHD wave that propagates along the
arcades, and in the formation of a sheared loop system on one side of the
emerging flux. The second reconnection occurs between these newly formed loops
and remote arcade fields, and yields the formation of a second loop system on
the opposite side of the emerging flux. The two loop systems collectively
display an anenome pattern that is located below the fan surface. The flux that
surrounds the inner spine field line of the nullpoint retains a fraction of the
emerged twist, while the remaining twist is evacuated along the reconnected
arcades. The nature and timing of the features which occur in the simulation do
qualititatively reproduce those observed by XRT in the particular event studied
in this paper. Moreover, the two-step reconnection process suggests a new
consistent and generic model for the formation of anemone regions in the solar
corona.Comment: Accepted for publication in ApJ, 11 pages and 5 figure
Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments
With continued advances in Geographic Information Systems and related
computational technologies, statisticians are often required to analyze very
large spatial datasets. This has generated substantial interest over the last
decade, already too vast to be summarized here, in scalable methodologies for
analyzing large spatial datasets. Scalable spatial process models have been
found especially attractive due to their richness and flexibility and,
particularly so in the Bayesian paradigm, due to their presence in hierarchical
model settings. However, the vast majority of research articles present in this
domain have been geared toward innovative theory or more complex model
development. Very limited attention has been accorded to approaches for easily
implementable scalable hierarchical models for the practicing scientist or
spatial analyst. This article is submitted to the Practice section of the
journal with the aim of developing massively scalable Bayesian approaches that
can rapidly deliver Bayesian inference on spatial process that are practically
indistinguishable from inference obtained using more expensive alternatives. A
key emphasis is on implementation within very standard (modest) computing
environments (e.g., a standard desktop or laptop) using easily available
statistical software packages without requiring message-parsing interfaces or
parallel programming paradigms. Key insights are offered regarding assumptions
and approximations concerning practical efficiency.Comment: 20 pages, 4 figures, 2 table
Linear electric field frequency shift (important for next generation electric dipole moment searches) induced in confined gases by a magnetic field gradient
The search for particle electric dipole moments (edm) represents a most
promising way to search for physics beyond the standard model. A number of
groups are planning a new generation of experiments using stored gases of
various kinds. In order to achieve the target sensitivities it will be
necessary to deal with the systematic error resulting from the interaction of
the well-known field with
magnetic field gradients (often referred to as the geometric phase effect
(Commins, ED; Am. J. Phys. \QTR{bf}{59}, 1077 (1991), Pendlebury, JM
\QTR{em}{et al;} Phys. Rev. \QTR{bf}{A70}, 032102 (2004)). This interaction
produces a frequency shift linear in the electric field, mimicking an edm. In
this work we introduce an analytic form for the velocity auto-correlation
function which determines the velocity-position correlation function which in
turn determines the behavior of the frequency shift (Lamoreaux, SK and Golub,
R; Phys. Rev \QTR{bf}{A71}, 032104 (2005)) and show how it depends on the
operating conditions of the experiment. We also discuss some additional issues.Comment: 21 pages, 5 figure
Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP
Context. A large prominence was observed on September 24, 2013, for three
hours (12:12 UT -15:12 UT) with the newly launched (June 2013) Interface Region
Imaging Spectrograph (IRIS), THEMIS (Tenerife), the Hinode Solar Optical
Telescope (SOT), the Solar Dynamic Observatory Atmospheric Imaging Assembly
(SDO/AIA), and the Multichannel Subtractive Double Pass spectrograph (MSDP) in
the Meudon Solar Tower. Aims. The aim of this work is to study the dynamics of
the prominence fine structures in multiple wavelengths to understand their
formation. Methods. The spectrographs IRIS and MSDP provided line profiles with
a high cadence in Mg II and in Halpha lines. Results. The magnetic field is
found to be globally horizontal with a relatively weak field strength (8-15
Gauss). The Ca II movie reveals turbulent-like motion that is not organized in
specific parts of the prominence. On the other hand, the Mg II line profiles
show multiple peaks well separated in wavelength. Each peak corresponds to a
Gaussian profile, and not to a reversed profile as was expected by the present
non-LTE radiative transfer modeling. Conclusions. Turbulent fields on top of
the macroscopic horizontal component of the magnetic field supporting the
prominence give rise to the complex dynamics of the plasma. The plasma with the
high velocities (70 km/s to 100 km/s if we take into account the transverse
velocities) may correspond to condensation of plasma along more or less
horizontal threads of the arch-shape structure visible in 304 A. The steady
flows (5 km/s) would correspond to a more quiescent plasma (cool and
prominence-corona transition region) of the prominence packed into dips in
horizontal magnetic field lines. The very weak secondary peaks in the Mg II
profiles may reflect the turbulent nature of parts of the prominence.Comment: 15 pages, 14 figure
Conductance calculations for quantum wires and interfaces: mode matching and Green functions
Landauer's formula relates the conductance of a quantum wire or interface to
transmission probabilities. Total transmission probabilities are frequently
calculated using Green function techniques and an expression first derived by
Caroli. Alternatively, partial transmission probabilities can be calculated
from the scattering wave functions that are obtained by matching the wave
functions in the scattering region to the Bloch modes of ideal bulk leads. An
elegant technique for doing this, formulated originally by Ando, is here
generalized to any Hamiltonian that can be represented in tight-binding form. A
more compact expression for the transmission matrix elements is derived and it
is shown how all the Green function results can be derived from the mode
matching technique. We illustrate this for a simple model which can be studied
analytically, and for an Fe|vacuum|Fe tunnel junction which we study using
first-principles calculations.Comment: 14 pages, 5 figure
Comment on "Giant absorption cross section of ultracold neutrons in Gadolinium"
Rauch et al (PRL 83, 4955, 1999) have compared their measurements of the Gd
cross section for Ultra-cold neutrons with an exptrapolation of the cross
section for thermal neutrons and interpreted the discrepancy in terms of
coherence properties of the neutron. We show the extrapolation used is based on
a misunderstanding and that coherence properties play no role in absorption.Comment: 2 pages, 1 postscript figure, comment on Rauch et al, PRL 83,4955
(1999
Structure of solar coronal loops: from miniature to large-scale
We will use new data from the High-resolution Coronal Imager (Hi-C) with
unprecedented spatial resolution of the solar corona to investigate the
structure of coronal loops down to 0.2 arcsec. During a rocket flight Hi-C
provided images of the solar corona in a wavelength band around 193 A that is
dominated by emission from Fe XII showing plasma at temperatures around 1.5 MK.
We analyze part of the Hi-C field-of-view to study the smallest coronal loops
observed so far and search for the a possible sub-structuring of larger loops.
We find tiny 1.5 MK loop-like structures that we interpret as miniature coronal
loops. These have length of the coronal segment above the chromosphere of only
about 1 Mm and a thickness of less than 200 km. They could be interpreted as
the coronal signature of small flux tubes breaking through the photosphere with
a footpoint distance corresponding to the diameter of a cell of granulation. We
find loops that are longer than 50 Mm to have a diameter of about 2 arcsec or
1.5 Mm, consistent with previous observations. However, Hi-C really resolves
these loops with some 20 pixels across the loop. Even at this greatly improved
spatial resolution the large loops seem to have no visible sub-structure.
Instead they show a smooth variation in cross-section. The fact that the large
coronal loops do not show a sub-structure at the spatial scale of 0.1 arcsec
per pixel implies that either the densities and temperatures are smoothly
varying across these loops or poses an upper limit on the diameter of strands
the loops might be composed of. We estimate that strands that compose the 2
arcsec thick loop would have to be thinner than 15 km. The miniature loops we
find for the first time pose a challenge to be properly understood in terms of
modeling.Comment: Accepted for publication in A&A (Jun 19, 2013), 11 pages, 10 figure
- …