87 research outputs found

    Segregation, precipitation, and \alpha-\alpha' phase separation in Fe-Cr alloys: a multi-scale modelling approach

    Full text link
    Segregation, precipitation, and phase separation in Fe-Cr systems is investigated. Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy are used. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods has to be used. Using Exact Muffin-Tin Orbitals method the effective chemical potential as a function of Cr content (0-15 at.% Cr) is calculated for a surface, second atomic layer and bulk. At ~10 at.% Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr containing surfaces are expected when the Cr content exceeds ~10 at.%. The second atomic layer forms about 0.3 eV barrier for the migration of Cr atoms between bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. Using combined Monte Carlo molecular dynamics simulations, based on semiempirical potential, the precipitation of Cr into isolated pockets in bulk Fe-Cr and the upper limit of the solubility of Cr into Fe layers in Fe/Cr layer system is studied. The theoretical predictions are tested using spectroscopic measurements. Hard X-ray photoelectron spectroscopy and Auger electron spectroscopy investigations were carried out to explore Cr segregation and precipitation in Fe/Cr double layer and Fe_0.95Cr_0.05 and Fe_0.85Cr_0.15 alloys. Initial oxidation of Fe-Cr was investigated experimentally at 10^-8 Torr pressure of the spectrometers showing intense Cr_2O_3 signal. Cr segregation and the formation of Cr rich precipitates were traced by analysing the experimental spectral intensities with respect to annealing time, Cr content, and kinetic energy of the exited electron.Comment: 16 pages, 14 figures, 52 reference

    Formation and destabilization of Ga interstitials in GaAsN: Experiment and theory

    Get PDF
    Using first-principles total energy calculations we have found complex defects induced by N incorporation in GaAsN. The formation energy of the Ga interstitial atom is very significantly decreased due to local effects within the defect complex. The stability of the Ga interstitials is further increased at surfaces. The present results suggest that the energetically favorable Ga interstitial atoms are much more abundant in GaAsN than the previously considered N defects, which have relatively large formation energies. Our synchrotron radiation core-level photoemission measurements support the computational results. The formation of harmful Ga interstitials should be reduced by incorporating large group IV B atoms in GaAsN

    Towards virtual histology with X-ray grating interferometry

    Full text link
    Breast cancer is the most common type of cancer worldwide. Diagnosing breast cancer relies on clinical examination, imaging and biopsy. A core-needle biopsy enables a morphological and biochemical characterization of the cancer and is considered the gold standard for breast cancer diagnosis. A histopathological examination uses high-resolution microscopes with outstanding contrast in the 2D plane, but the spatial resolution in the third, Z-direction, is reduced. In the present paper, we propose two high-resolution table-top systems for phase-contrast X-ray tomography of soft-tissue samples. The first system implements a classical Talbot-Lau interferometer and allows to perform ex-vivo imaging of human breast samples with a voxel size of 5.57 μm. The second system with a comparable voxel size relies on a Sigray MAAST X-ray source with structured anode. For the first time, we demonstrate the applicability of the latter to perform X-ray imaging of human breast specimens with ductal carcinoma in-situ. We assessed image quality of both setups and compared it to histology. We showed that both setups made it possible to target internal features of breast specimens with better resolution and contrast than previously achieved, demonstrating that grating-based phase-contrast X-ray CT could be a complementary tool for clinical histopathology

    Line shape and composition of the In 3d5/2 core-level photoemission for the interface analysis of In-containing III-V semiconductors

    Get PDF
    The In 3d5/2 photoelectron spectroscopy peak has been widely used to determine the interface structures of In-containing III-V device materials (e.g., oxidation states). However, an unclear parameter affecting the determination of the energy shifts and number of the core-level components, and therefore, the interpreted interface structure and composition, is still the intrinsic In 3d5/2 peak line shape. It is undecided whether the line shape is naturally symmetric or asymmetric for pure In-containing III-V compounds. By using high-resolution photoelectron spectroscopy, we show that the In 3d5/2 asymmetry arising from the emission at high binding-energy tail is not an intrinsic property of InAs, InP, InSb and InGaAs. Furthermore, it is shown that asymmetry of In 3d5/2 peaks of pure III-V&rsquo;s originates from the natural surface reconstructions which cause the coexistence of slightly shifted In 3d5/2 &nbsp;components with the symmetric peak shape and dominant Lorentzian broadening.</p

    Segregation, precipitation, and α-α' phase separation in Fe-Cr alloys

    Get PDF
    Iron-chromium alloys, the base components of various stainless steel grades, have numerous technologically and scientifically interesting properties. However, these features are not yet sufficiently understood to allow their full exploitation in technological applications. In this work, we investigate segregation, precipitation, and phase separation in Fe-Cr systems analyzing the physical mechanisms behind the observed phenomena. To get a comprehensive picture of Fe-Cr alloys as a function of composition, temperature, and time the present investigation combines Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods have to be used. Using the exact muffin-tin orbitals method with the coherent potential approximation (CPA-EMTO) the effective chemical potential as a function of Cr content (0–15 at. % Cr) is calculated for a surface, second atomic layer, and bulk. At ∼10 at. % Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr-containing surfaces are expected when the Cr content exceeds ∼10 at. %. The second atomic layer forms about a 0.3 eV barrier for the migration of Cr atoms between the bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. However, for Cr concentration regions less than 10 at. %, the ab initio (CPA-EMTO) result of the important role of the second atomic layer to the surface is not reproducible from the large-scale Monte Carlo molecular dynamics (MCMD) simulation. On the other hand, for the nominal concentration of Cr larger than 10 at. % the MCMDsimulations show the precipitation of Cr into isolated pockets in bulk Fe-Cr and the existence of the upper limit of the solubility of Cr into Fe layers in Fe/Cr layer systems. For high Cr concentration alloys the performed spectroscopic measurements support the MCMD simulations. Hard x-ray photoelectron spectroscopy and Auger electron spectroscopy investigations were carried out to explore Cr segregation and precipitation in the Fe/Cr double layer and Fe0.95Cr0.05 and Fe0.85Cr0.15 alloys. Initial oxidation of Fe-Cr was investigated experimentally at 10−8 Torr pressure of the spectrometers showing intense Cr2O3 signal. Cr segregation and the formation of Cr-rich precipitates were traced by analyzing the experimental atomic concentrations and chemical shifts with respect to annealing time, Cr content, and kinetic energy of the exited electron.</p

    Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    Get PDF
    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination
    • …
    corecore