17 research outputs found

    Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Get PDF
    Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier

    A comprehensive study of the effect of in situ annealing at high growth temperature on the morphological and optical properties of self-assembled InAs/GaAs QDs

    No full text
    We investigate the effect of in situ annealing during growth pause on the morphological and optical properties of self-assembled InAs/GaAs quantum dots (QDs). The islands were grown at different growth rates and having different monolayer coverage. The results were explained on the basis of atomic force microscopy (AFM) and photo-luminescence (PL) measurements. The studies show the occurrence of ripening-like phenomenon, observed in strained semiconductor system. Agglomeration of the self-assembled QDs takes place during dot pause leading to an equilibrium size distribution. The PL properties of the QDs are affected by the Indium desorption from the surface of the QDs during dot pause annealing at high growth temperature (520A degrees C) subsiding the effect of the narrowing of the dot size distribution with growth pause. The samples having high monolayer coverage (3.4 ML) and grown at a slower growth rate (0.032 ML s(-1)) manifested two different QD families. Among the islands the smaller are coherent defect-free in nature, whereas the larger dots are plastically relaxed and hence optically inactive. Indium desorption from the island surface during the in situ annealing and inhomogeneous morphology as the dots agglomerate during the growth pause, also affects the PL emission from these dot assemblie

    The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes

    No full text
    We prove exponential contraction of renormalization along hybrid classes of infinitely renormalizable unimodal maps (with arbitrary combinatorics), in any even degree dd. We then conclude that orbits of renormalization are asymptotic to the full renormalization horseshoe, which we construct. Our argument for exponential contraction is based on a precompactness property of the renormalization operator ("beau bounds"), which is leveraged in the abstract analysis of holomorphic iteration. Besides greater generality, it yields a unified approach to all combinatorics and degrees: there is no need to account for the varied geometric details of the dynamics, which were the typical source of contraction in previous restricted proofs.Comment: 44 page

    SLYRB measures:natural invariant measures for chaotic systems

    No full text
    In many applications it is useful to consider not only the set that constitutes an attractor but also (if it exists) the asymptotic distribution of a typical trajectory converging to the attractor. Indeed, in the physics literature such a distribution is often assumed to exist. When it exists, it is called a "natural invariant measure". The results by Lasota and Yorke, and by Sinai, Ruelle and Bowen represent two approaches both of which establish the existence of an invariant measure. The goal of this paper is to relate the "Lasota-Yorke measure" for chaotic attractors in one-dimensional maps and the "Sinai-Ruelle-Bowen measure" for chaotic attractors in higher-dimensional dynamical systems. We introduce the notion of "SLYRB measure". (We pronounce the term "SLYRB" as a single word "slurb".) The SRB concept of measure can be motivated by asking how a trajectory from a typical initial point is distributed asymptotically. Similarly the SLYRB concept of measure can be motivated by asking what the average distribution is for trajectories of a large collection of initial points in some region not necessarily restricted to a single basin. The latter is analogous to ask where all the rain drops from a rain storm go and the former asks about where a single rain drop goes, perhaps winding up distributed throughout a particular lake. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore