360 research outputs found

    Chemotactic predator-prey dynamics

    Full text link
    A discrete chemotactic predator-prey model is proposed in which the prey secrets a diffusing chemical which is sensed by the predator and vice versa. Two dynamical states corresponding to catching and escaping are identified and it is shown that steady hunting is unstable. For the escape process, the predator-prey distance is diffusive for short times but exhibits a transient subdiffusive behavior which scales as a power law t1/3t^{1/3} with time tt and ultimately crosses over to diffusion again. This allows to classify the motility and dynamics of various predatory bacteria and phagocytes. In particular, there is a distinct region in the parameter space where they prove to be infallible predators.Comment: 4 pages, 4 figure

    Particle-unstable nuclei in the Hartree-Fock theory

    Get PDF
    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant states become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let

    Shell Corrections for Finite-Depth Deformed Potentials: Green's Function Oscillator Expansion Method

    Get PDF
    Shell corrections of the finite deformed Woods-Saxon potential are calculated using the Green's function method and the generalized Strutinsky smoothing procedure. They are compared with the results of the standard prescription which are affected by the spurious contribution from the unphysical particle gas. In the new method, the shell correction approaches the exact limit provided that the dimension of the single-particle (harmonic oscillator) basis is sufficiently large. For spherical potentials, the present method is faster than the exact one in which the contribution from the particle continuum states is explicitly calculated. For deformed potentials, the Green's function method offers a practical and reliable way of calculating shell corrections for weakly bound nuclei.Comment: submitted to Phys. Rev. C, 12 pages, 7 figure

    Decay Rate of Triaxially-Deformed Proton Emitters

    Full text link
    The decay rate of a triaxially-deformed proton emitter is calculated in a particle-rotor model, which is based on a deformed Woods-Saxon potential and includes a deformed spin-orbit interaction. The wave function of the I=7/2I=7/2^{-} ground state of the deformed proton emitter 141^{141}Ho is obtained in the adiabatic limit, and a Green's function technique is used to calculate the decay rate and branching ratio to the first excited 2+^{+} state of the daughter nucleus. Only for values of the triaxial angle γ\gamma <5<5^{\circ} is good agreement obtained for both the total decay rate and the 2+^{+} branching ratio.Comment: 19 pages, 4 figure

    Microscopic multicluster description of neutron-halo nuclei with a stochastic variational method

    Get PDF
    To test a multicluster approach for halo nuclei, we give a unified description for the ground states of 6^6He and 8^8He in a model comprising an α\alpha cluster and single-neutron clusters. The intercluster wave function is taken a superposition of terms belonging to different arrangements, each defined by a set of Jacobi coordinates. Each term is then a superposition of products of gaussian functions of the individual Jacobi coordinates with different widths, projected to angular momenta l=0l=0 or 1. To avoid excessively large dimensions and ``overcompleteness", stochastic methods were tested for selecting the gaussians spanning the basis. For 6^6He, we were able to calculate ground-state energies that are virtully exact within the subspace defined by the arrangements and ll values, and we found that preselected random sets of bases (with or without simulated annealing) yield excellent numerical convergence to this ``exact" value with thoroughly truncated bases. For 8^8He good energy convergence was achieved in a state space comprising three arrangements with all l=0l=0, and there are indications showing that the contributions of other subspaces are likely to be small. The 6^6He and 8^8He energies are reproduced by the same effective force very well, and the matter radii obtained are similar to those of other sophisticated calculations.Comment: Latex , 8 figures available on request, ATOMKI-4-1993-

    Comment on ``Structure of exotic nuclei and superheavy elements in a relativistic shell model''

    Get PDF
    A recent paper [M. Rashdan, Phys. Rev. C 63, 044303 (2001)] introduces the new parameterization NL-RA1 of the relativistic mean-field model which is claimed to give a better description of nuclear properties than earlier ones. Using this model ^{298}114 is predicted to be a doubly-magic nucleus. As will be shown in this comment these findings are to be doubted as they are obtained with an unrealistic parameterization of the pairing interaction and neglecting ground-state deformation.Comment: 2 pages REVTEX, 3 figures, submitted to comment section of Phys. Rev. C. shortened and revised versio

    Localization of shadow poles by complex scaling

    Full text link
    Through numerical examples we show that the complex scaling method is suited to explore the pole structure in multichannel scattering problems. All poles lying on the multisheeted Riemann energy surface, including shadow poles, can be revealed and the Riemann sheets on which they reside can be identified.Comment: 6 pages, Latex with Revtex, 3 figures (not included) available on reques

    Structure of positive energy states in a deformed mean-field potential

    Full text link
    We investigate the properties of single-particle resonances in a non-spherical potential by solving the coupled-channels equations for the radial wave functions. We first generalize the box discretization method for positive energy states to a deformed system. As in the spherical case, we find that the discretized energy is stabilized against the box size when a resonance condition is met. Using the wave functions thus obtained, we then discuss the energy and the radial dependences of scattering wave functions in the vicinity of an isolated resonance. In the eigenchannel basis, where the SS-matrix is diagonal, we propose a generalized expression for the factorization formula for the multi-channel wave function. We find that the factorized wave function agrees well with the exact solution inside the centrifugal barrier when the energy distance from the resonance is less than the resonance width.Comment: 22 pages, 5 eps figures; a figure adde

    Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method

    Get PDF
    The newly developed nonadiabatic method based on the coupled-channel Schroedinger equation with Gamow states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic approximation corresponding to the strong coupling scheme. Calculations are performed for several experimentally seen, non-spherical nuclei beyond the proton dripline. By comparing theory and experiment, we are able to characterize the angular momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure
    corecore