106 research outputs found

    Genetic and environmental underpinnings of spatial abilities and their role in predicting academic achievement and success in STEM

    Get PDF
    Behavior Genetics Association 45th Annual Meeting Abstract: Spatial abilities encompass several factors that are differentiable from general cognitive ability (intelligence). Importantly, spatial abilities have been shown to be significant predictors of many life outcomes, even after controlling for intelligence. Quantitative genetic studies have shown that diverse measures of spatial ability are moderately heritable (30–50 %), although some important aspects of spatial ability such as navigation and map-reading have been neglected. Little is known about the factor structure of spatial measures or their links with academic achievement, especially STEM subjects (science, technology, engineering, mathematics). For these reasons, we launched a program of research creating novel online gamified measures of diverse spatial abilities including mental rotation, spatial visualization, spatial scanning, navigation, and map-reading. We piloted the measures on 100 unrelated individuals; all measures produced good test–retest reliability (0.7 on average). The battery was administered online to 1000 twin pairs (age 19–21) from the UK representative Twins Early Development Study (TEDS). Phenotypically, the results provided some evidence for the multifactorial nature of spatial ability, independent of intelligence, despite substantial correlations among the factors. Univariate genetic analyses yielded moderate heritability for all tests and factors. One of the most interesting findings was that these spatial factors correlated with success in STEM subjects, especially with achievement in mathematics, even after controlling for intelligence, and genetic factors largely accounted for these phenotypic associations TEDS is supported by a program grant to RP from the UK Medical Research Council [G0901245; and previously G0500079], with additional support from the US National Institutes of Health [HD044454; HD059215]. NS and KR are supported by Medical Research Council

    Role Of Retroelements In The Development Of COVID-19 Neurological Consequences

    Get PDF
    Retroelements play a key role in brain functioning in humans and other animals, since they represent dynamic regulatory elements controlling the expression of specific neuron types. The activity of retroelements in the brain is impaired under the influence of SARS-CoV-2, penetrating the blood-brain barrier. We propose a new concept, according to which the neurological complications of COVID-19 and their long-term effects are caused by modified expression of retroelements in neurons due to viral effect. This effect is implemented in several ways: a direct effect of the virus on the promoter regions of retroelement-encoding genes, virus interaction with miRNAs causing silencing of transposons, and an effect of the viral RNA on the products of retroelement transcription. Aging-related physiological activation of retroelements in the elderly is responsible for more severe course of COVID-19. The associations of multiple sclerosis, Parkinson’s disease, Guillain-Barré syndrome, acute disseminated encephalomyelitis with coronavirus lesions also indicate the role of retroelements in such complications, because retroelements are involved in the mechanisms of the development of these diseases. According to meta-analyses, COVID-19-caused neurological complications ranged 36.4-73%. The neuropsychiatric consequences of COVID-19 are observed in patients over a long period after recovery, and their prevalence may exceed those during the acute phase of the disease. Even 12 months after recovery, unmotivated fatigue, headache, mental disorders, and neurocognitive impairment were observed in 82%, 60%, 26.2-45%, and 16.2-46.8% of patients, correspondingly. These manifestations are explained by the role of retroelements in the integration of SARS-CoV-2 into the human genome using their reverse transcriptase and endonuclease, which results in a long-term viral persistence. The research on the role of specific retroelements in these changes can become the basis for developing targeted therapy for neurological consequences of COVID-19 using miRNAs, since epigenetic changes in the functioning of the genome in neurons, affected by transposons, are reversible

    True Grit and Genetics: Predicting Academic Achievement from Personality

    Get PDF
    Grit -- perseverance and passion for long-term goals -- has been shown to be a significant predictor of academic success, even after controlling for other personality factors. Here, for the first time, we use a UK-representative sample and a genetically sensitive design to unpack the etiology of grit and its prediction of academic achievement in comparison to well-established personality traits. For 4,642 16-year-olds (2,321 twin pairs), we used the Grit-S scale (Perseverance of Effort and Consistency of Interest), along with the Big-5 personality traits, to predict scores on the General Certificate of Secondary Education (GCSE) exams, which are administered UK-wide at the end of compulsory education. Twin analyses of Grit Perseverance yielded a heritability estimate of 37% (20% for Consistency of Interest) and no evidence for shared environmental influence. Personality, primarily Conscientiousness, predicts about 6% of the variance in GCSE scores, but Grit adds little to this prediction. Moreover, multivariate twin analyses showed that roughly two-thirds of the GCSE prediction is mediated genetically. Grit Perseverance of Effort and Big-5 Conscientiousness are to a large extent the same trait both phenotypically (r=0.53) and genetically (genetic correlation = 0. 86). We conclude that the etiology of Grit is highly similar to other personality traits, not only in showing substantial genetic influence but also in showing no influence of shared environmental factors. Personality significantly predicts academic achievement, but Grit adds little phenotypically or genetically to the prediction of academic achievement beyond traditional personality factors, especially Conscientiousness

    Applicability of the Online Short Spatial Ability Battery to university students testing

    Get PDF
    Introduction. Multiple studies advocate an importance of spatial abilities (SA) for educational and occupational success, especially in STEM. Recently an Online Short Spatial Ability Battery (OSSAB) was developed and normed for SA testing in adolescents. The battery includes mechanical reasoning, paper folding, pattern assembly, and shape rotation tests. The battery has shown good psychometric characteristics (high reliability and validity, low redundancy, discriminative power), and is available in open access and free to use. Aim. The present research aims: 1) to examine the applicability of the OSSAB for university student testing; 2) to describe its psychometric properties and structure; and 3) to investigate links between SA and educational performance. Methods. A total of 772 university students (aged from 18 to 26, mean age (SD) = 19.55 (1.51), 63.1% females) participated in the study. Participants provided information about their age, gender, university major, and academic achievement, and completed a battery of tests that included the OSSAB tests. Results. The study reports psychometric norms for using the OSSAB in university students. Students’ performance in the OSSAB was similar to that shown in previous research in adolescents in terms of means and variance. The OSSAB showed adequate psychometric properties in this sample: no floor or ceiling effects; low redundancy; moderate to high internal consistency; high discriminative power across university majors; and high external validity. The results indicated that around 6% of the students showed very high levels of SA (higher than 1.5 SD above the mean), and around 8% of students showed very low levels of SA (lower than 1.5 SD below mean). In addition, the OSSAB scores were linked to educational profile choice and exam scores, with small-to-medium effect sizes. Scientific novelty. The study provides psychometric norms for a short online open measure of spatial ability in university students. Practical significance. The OSSAB can be used to provide individual recommendations to students (e.g. SA training), to identify spatially gifted students, and for research purposes in university contexts

    Gene-Environment Interaction in the Etiology of Mathematical Ability Using SNP Sets

    Get PDF
    Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a ‘SNP set’ composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative

    Phenomenon of mathematical fluency.

    Get PDF
    This study explored the longitudinal relationship between motivation and acquisition of a second modern foreign language (MFL). Participants were 11 to 12 year-old pupils attending the first year of secondary school. They constituted a naïve population as formal MFL learning in the United Kingdom begins in secondary school. MFL achievement, assessed using national curriculum standards, and self-report measures of motivation were collected at four time points throughout the year. Previous motivation was found to be the only predictor of motivation at the end of the academic year. In the same way, previous achievement was the only predictor of final achievement. Results showed that the correlational relationship between motivation and achievement over time was stable, with modest effect size. Cross-lagged panel analysis was adopted in order to assess the causality of the observed relationship between motivation and achievement. However, no cross-lagged relationships were observed in this sample. Once accounting for the stability of the constructs and their cross-sectional (contemporaneous) relationship, no further variance was explained by cross-lagged relationships between motivation and achievement at different time points

    Brain correlates of non-symbolic numerosity estimation in low and high mathematical ability children

    Get PDF
    Previous studies have implicated several brain areas as subserving numerical approximation. Most studies have examined brain correlates of adult numerical approximation and have not considered individual differences in mathematical ability. The present study examined non-symbolic numerical approximation in two groups of 10-year-olds: Children with low and high mathematical ability. The aims of this study were to investigate the brain mechanisms associated with approximate numerosity in children and to assess whether individual differences in mathematical ability are associated with differential brain correlates during the approximation task. The results suggest that, similarly to adults, multiple and distributed brain areas are involved in approximation in children. Despite equal behavioral performance, there were differences in the brain activation patterns between low and high mathematical ability groups during the approximation task. This suggests that individual differences in mathematical ability are reflected in differential brain response during approximation

    Protocol for: Sheffield Obesity Trial (SHOT): A randomised controlled trial of exercise therapy and mental health outcomes in obese adolescents [ISRCNT83888112]

    Get PDF
    Background While obesity is known to have many physiological consequences, the psychopathology of this condition has not featured prominently in the literature. Cross-sectional studies have indicated that obese children have increased odds of experiencing poor quality of life and mental health. However, very limited trial evidence has examined the efficacy of exercise therapy for enhancing mental health outcomes in obese children, and the Sheffield Obesity Trial (SHOT) will provide evidence of the efficacy of supervised exercise therapy in obese young people aged 11–16 years versus usual care and an attention-control intervention. Method/design SHOT is a randomised controlled trial where obese young people are randomised to receive; (1) exercise therapy, (2) attention-control intervention (involving body-conditioning exercises and games that do not involve aerobic activity), or (3) usual care. The exercise therapy and attention-control sessions will take place three times per week for eight weeks and a six-week home programme will follow this. Ninety adolescents aged between 11–16 years referred from a children's hospital for evaluation of obesity or via community advertisements will need to complete the study. Participants will be recruited according to the following criteria: (1) clinically obese and aged 11–16 years (Body Mass Index Centile > 98th UK standard) (2) no medical condition that would restrict ability to be active three times per week for eight weeks and (3) not diagnosed with insulin dependent diabetes or receiving oral steroids. Assessments of outcomes will take place at baseline, as well as four (intervention midpoint) and eight weeks (end of intervention) from baseline. Participants will be reassessed on outcome measures five and seven months from baseline. The primary endpoint is physical self-perceptions. Secondary outcomes include physical activity, self-perceptions, depression, affect, aerobic fitness and BMI

    The role of inflammatory system genes in individual differences in nonverbal intelligence

    Get PDF
    Nonverbal intelligence represents one of the components of brain cognitive functions, which uses visual images and nonverbal approaches for solving required tasks. Interaction between the nervous and immune systems plays a specif ic role in individual differences in brain cognitive functions. Therefore, the genes encoding pro- and antiinf lammatory cytokines are prospective candidate genes in the study of nonverbal intelligence. Within the framework of the present study, we conducted the association analysis of six SNPs in the genes that encode proteins involved in inf lammatory response regulation in the central nervous system (CRP rs3093077, IL1А rs1800587, IL1B rs16944, TNF/ LTA rs1041981, rs1800629, and P2RX7 rs2230912), with nonverbal intelligence in mentally healthy young adults aged 18– 25 years without cognitive decline with inclusion of sex, ethnicity and the presence of the “risky” APOE ε4 allele as covariates. Considering an important role of environmental factors in the development of brain cognitive functions in general and nonverbal intelligence in particular, we conducted an analysis of gene-by-environment (G × E) interactions. As a result of a statistical analysis, rs1041981 and rs1800629 in the tumor necrosis factor gene (TNF) were shown to be associated with a phenotypic variance in nonverbal intelligence at the haplotype level (for АА-haplotype: βST = 1.19; p = 0.033; pperm = 0.047) in carriers of the “risky” APOE ε4 allele. Gene-by-environment interaction models, which determined interindividual differences in nonverbal intelligence, have been constructed: sibship size (number of children in a family) and smoking demonstrated a modulating effect on association of the TNF/LTA (rs1041981) (β = 2.08; βST = 0.16; p = 0.001) and P2RX7 (rs2230912) (β = –1.70; βST = –0.10; p = 0.022) gene polymorphisms with nonverbal intelligence. The data obtained indicate that the effect of TNF/LTA on the development of cognitive functions is evident only in the presence of the “unfavorable” APOE ε4 variant and/or certain environmental conditions

    Genetics affects choice of academic subjects as well as achievement.

    Get PDF
    We have previously shown that individual differences in educational achievement are highly heritable throughout compulsory education. After completing compulsory education at age 16, students in England can choose to continue to study for two years (A-levels) in preparation for applying to university and they can freely choose which subjects to study. Here, for the first time, we show that choosing to do A-levels and the choice of subjects show substantial genetic influence, as does performance after two years studying the chosen subjects. Using a UK-representative sample of 6584 twin pairs, heritability estimates were 44% for choosing to do A-levels and 52–80% for choice of subject. Achievement after two years was also highly heritable (35–76%). The findings that DNA differences substantially affect differences in appetites as well as aptitudes suggest a genetic way of thinking about education in which individuals actively create their own educational experiences in part based on their genetic propensities
    corecore