546 research outputs found

    Giant phonon anomalies in the pseudo-gap phase of TiOCl

    Full text link
    We report infrared and Raman spectroscopy results of the spin-1/2 quantum magnet TiOCl. Giant anomalies are found in the temperature dependence of the phonon spectrum, which hint to unusual coupling of the electronic degrees of freedom to the lattice. These anomalies develop over a broad temperature interval, suggesting the presence of an extended fluctuation regime. This defines a pseudo-gap phase, characterized by a local spin-gap. Below 100 K a dimensionality cross-over leads to a dimerized ground state with a global spin-gap of about 2Δspin\Delta_{spin}\approx~430 K.Comment: 4 pages, 3 figures, for further information see http://www.peter-lemmens.d

    Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    Get PDF
    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure

    Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral

    Get PDF
    In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array (Russia, Orenburg region). An efficient extraction route consisting of treatment on serpentinite in 40% HNO3 at 80 C followed by NH4OH titration for Mg(OH)2 precipitation was demonstrate

    Signatures of Electronic Correlations in Optical Properties of LaFeAsO1x_{1-x}Fx_x

    Full text link
    Spectroscopic ellipsometry is used to determine the dielectric function of the superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} (TcT_c = 27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10 T\leq T \leq 350 K. The free charge carrier response in both samples is heavily damped with the effective carrier density as low as 0.040±\pm0.005 electrons per unit cell. The spectral weight transfer in the undoped LaFeAsO associated with opening of the pseudogap at about 0.65 eV is restricted at energies below 2 eV. The spectra of superconducting LaFeAsO0.9_{0.9}F0.1_{0.1} reveal a significant transfer of the spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.Comment: 4 pages, 4 figures, units in Fig.2 adde

    Ferromagnetism and Lattice Distortions in the Perovskite YTiO3_3

    Full text link
    The thermodynamic properties of the ferromagnetic perovskite YTiO3_3 are investigated by thermal expansion, magnetostriction, specific heat, and magnetization measurements. The low-temperature spin-wave contribution to the specific heat, as well as an Arrott plot of the magnetization in the vicinity of the Curie temperature TC27T_C\simeq27 K, are consistent with a three-dimensional Heisenberg model of ferromagnetism. However, a magnetic contribution to the thermal expansion persists well above TCT_C, which contrasts with typical three-dimensional Heisenberg ferromagnets, as shown by a comparison with the corresponding model system EuS. The pressure dependences of TCT_C and of the spontaneous moment MsM_s are extracted using thermodynamic relationships. They indicate that ferromagnetism is strengthened by uniaxial pressures pa\mathbf{p}\parallel \mathbf{a} and is weakened by uniaxial pressures pb,c\mathbf{p}\parallel \mathbf{b},\mathbf{c} and hydrostatic pressure. Our results show that the distortion along the aa- and bb-axes is further increased by the magnetic transition, confirming that ferromagnetism is favored by a large GdFeO3_3-type distortion. The c-axis results however do not fit into this simple picture, which may be explained by an additional magnetoelastic effect, possibly related to a Jahn-Teller distortion.Comment: 12 pages, 13 figure

    Spin-controlled Mott-Hubbard bands in LaMnO_3 probed by optical ellipsometry

    Full text link
    Spectral ellipsometry has been used to determine the dielectric function of an untwinned crystal of LaMnO_3 in the spectral range 0.5-5.6 eV at temperatures 50 K < T < 300 K. A pronounced redistribution of spectral weight is found at the Neel temperature T_N = 140 K. The anisotropy of the spectral weight transfer matches the magnetic ordering pattern. A superexchange model quantitatively describes spectral weight transfer induced by spin correlations. This analysis implies that the lowest-energy transitions around 2 eV are intersite d-d transitions, and that LaMnO_3 is a Mott-Hubbard insulator.Comment: 4 pages, 4 figure

    The PCA-seq method applied to analyze of the dynamics of COVID-19 epidemic indicators

    Get PDF
    In time series analysis using the SSA method, a univariate series is converted into the multivariate one by shifts. The resulting trajectory matrix is subjected to principal component analysis (PCA). However, the principal components can also be computed using the PCA-Seq method if segments of the original series are selected as objects. The matrix of Euclidean distances between the objects can be obtained using any method, which offers additional opportunities for time series analysis compared to the conventional SSA. In this study, the PCA-Seq method was used to analyze the dynamics of COVID-19 epidemic indicators

    Dipole-active optical phonons in YTiO_3: ellipsometry study and lattice-dynamics calculations

    Full text link
    The anisotropic complex dielectric response was accurately extracted from spectroscopic ellipsometry measurements at phonon frequencies for the three principal crystallographic directions of an orthorhombic (Pbnm) YTiO_3 single crystal. We identify all twenty five infrared-active phonon modes allowed by symmetry, 7B_1u, 9B_2u, and 9B_3u, polarized along the c-, b-, and a-axis, respectively. From a classical dispersion analysis of the complex dielectric functions \tilde\epsilon(\omega) and their inverses -1/\tilde\epsilon(\omega) we define the resonant frequencies, widths, and oscillator strengths of the transverse (TO) and longitudinal (LO) phonon modes. We calculate eigenfrequencies and eigenvectors of B_1u, B_2u, and B_3u normal modes and suggest assignments of the TO phonon modes observed in our ellipsometry spectra by comparing their frequencies and oscillator strengths with those resulting from the present lattice-dynamics study. Based on these assignments, we estimate dynamical effective charges of the atoms in the YTiO_3 lattice. We find that, in general, the dynamical effective charges in YTiO_3 lattice are typical for a family of perovskite oxides. By contrast to a ferroelectric BaTiO_3, the dynamical effective charge of oxygen related to a displacement along the c-axis does not show the anomalously large value. At the same time, the dynamical effective charges of Y and ab-plane oxygen exhibit anisotropy, indicating strong hybridization along the a-axis.Comment: 8 pages, 7 figure
    corecore