48 research outputs found

    Full-depth temperature trends in the Northeastern Atlantic through the early 21st century

    Get PDF
    The vertical structure of temperature trends in the northeastern Atlantic (NEA) is investigated from a blend of Argo and hydrography data. The representativeness of sparse hydrography sampling in the basin-mean is assessed using a numerical model. Between 2003 and 2013, the NEA underwent a strong surface cooling (0-450?m) and a significant warming at intermediate and deep levels (1000?m-3000?m) that followed a strong cooling trend observed between 1988 and 2003. During 2003-2013, gyre-specific changes are found in the upper 1000?m (warming and cooling of the subtropical and subpolar gyres, respectively) whilst the intermediate and deep warming primarily occurred in the subpolar gyre, with important contributions from isopycnal heave and water mass property changes. The full-depth temperature change requires a local downward heat flux of 0.53?±?0.06?W?m?2 through the sea-surface, and its vertical distribution highlights the likely important role of the NEA in the recent global warming hiatus

    Melting and Evolution of Amphibole‐Rich Back‐Arc Abyssal Peridotites at the Mado Megamullion, Shikoku Basin

    No full text
    Abstract The Mado Megamullion is an oceanic core complex (OCC) in the Shikoku back‐arc basin within the Philippine Sea Plate. Mantle peridotites (serpentinized) recovered by six dredge and submersible cruises exhibit signatures of extensive deformation. Amorphous pseudomorphs after plagioclase in many of the samples, as well as plagioclase‐spinel intergrowths, are clear evidence of melt stagnation and mantle reaction. Spinels show a wide range of compositions in terms of their Cr#, Mg#, and TiO2 content. The presence of apparently magmatic high‐temperature pargasitic amphibole in veins and as replacement of clinopyroxene suggests that it may be a primary or near‐primary mineral crystallized from a hydrous melt which is unusual for abyssal peridotites. Two trace‐element populations of clinopyroxenes are in equilibrium with depleted and enriched basaltic melts, respectively. Rare‐earth element (REE) in the most depleted clinopyroxenes are modeled by 10% fractional melting except for a ubiquitous La‐Ce “kick.” Multiple models of open system melting combined with subsequent mixing of an enriched melt can explain the REE data. Broadly it appears that the peridotites underwent variable degrees of partial melting with moderate influx of enriched melts, which agrees with the other textural and chemical evidence of melt‐rock reaction and re‐fertilization. The compositions of the accumulated melts simulated by the open system models reproduce the enrichments in fluid mobile elements (Ba, U, and Pb) observed in basalts dredged from the Shikoku basin. Back‐arc basin peridotites at Mado Megamullion appear to have a unique petrographic and geochemical character that is distinct from those of peridotites exposed at the seafloor after formation from mid‐ocean ridges
    corecore