4,744 research outputs found
Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, and COVID-19.
Albeit the lungs were thought to be sterile, recent scientific data reported a microbial microbiota in the lungs of healthy individuals. Apparently, new developments in technological approachesincluding genome sequencing methodologies contributed in the identification of the microbiota and shed light on the role of the gut and lung microbiomes in the development of respiratory diseases. Moreover, knowledge of the human microbiome in health may act as a tool for evaluating characteristic shifts in the case of disease. This review paper discusses the development of respiratory disease linked to the intestinal dysbiosis which influences the lung immunity and microbiome. The gastrointestinal-lung dialogue provides interesting aspects in the pathogenesis of the respiratory diseases. Lastly, we were further interested on the role of this interconnection in the progression and physiopathology of newly emergedCOVID-19
The Antiferromagnetic Heisenberg Model on Fullerene-Type Symmetry Clusters
The nearest neighbor antiferromagnetic Heisenberg model is
considered for spins sitting on the vertices of clusters with the connectivity
of fullerene molecules and a number of sites ranging from 24 to 32. Using
the permutational and spin inversion symmetries of the Hamiltonian the low
energy spectrum is calculated for all the irreducible representations of the
symmetry group of each cluster. Frustration and connectivity result in
non-trivial low energy properties, with the lowest excited states being
singlets except for . Same hexagon and same pentagon correlations are the
most effective in the minimization of the energy, with the
symmetry cluster having an unusually strong singlet intra-pentagon correlation.
The magnetization in a field shows no discontinuities unlike the icosahedral
fullerene clusters, but only plateaux with the most pronounced for
. The spatial symmetry as well as the connectivity of the clusters appear
to be important for the determination of their magnetic properties.Comment: Extended to include low energy spectra, correlation functions and
magnetization data of clusters up to 32 site
Preoperative tumor marking with indocyanine green (ICG) prior to minimally invasive colorectal cancer: a systematic review of current literature
AIMS:
To describe the currently available evidence regarding the efficacy and safety of preoperative tumor marking using indocyanine green (ICG) prior to laparoscopic or robotic colorectal resections.
METHODS:
A systematic search for relevant studies was conducted using the following databases: Embase (OVID), MEDLINE® (OVID), APA PsycInfo (OVID), Global Health (OVID) and HMIC Health Management Information Consortium (OVID) through June 2022 reported according to PRISMA 2020 guidelines. Primary outcome was the detection rate of the tumor sites preoperatively marked with ICG. Secondary outcomes were timing of ICG injection in days prior to the operation and technique-related complications.
RESULTS:
Eight single center studies, published between 2008 and 2022, were identified yielding a total of 1,061 patients, of whom 696 were preoperatively tattooed with ICG. Injection dosage of diluted ICG ranged from 0.1–1.5 ml. Four studies used the saline test injection method prior to ICG injection. When the marking was placed within one week, the visualization rate was 650/668 (97%), whereas when it was longer than one week, the detection rate was 8/56 (14%). No severe complications were reported.
CONCLUSION:
Preoperative tumor marking using ICG prior to minimally invasive colorectal resections is safe and effective, allowing intraoperative tumor site location when performed up to a week prior to surgery without disturbing the surgical view in potential mild complications
Direct -body code on low-power embedded ARM GPUs
This work arises on the environment of the ExaNeSt project aiming at design
and development of an exascale ready supercomputer with low energy consumption
profile but able to support the most demanding scientific and technical
applications. The ExaNeSt compute unit consists of densely-packed low-power
64-bit ARM processors, embedded within Xilinx FPGA SoCs. SoC boards are
heterogeneous architecture where computing power is supplied both by CPUs and
GPUs, and are emerging as a possible low-power and low-cost alternative to
clusters based on traditional CPUs. A state-of-the-art direct -body code
suitable for astrophysical simulations has been re-engineered in order to
exploit SoC heterogeneous platforms based on ARM CPUs and embedded GPUs.
Performance tests show that embedded GPUs can be effectively used to accelerate
real-life scientific calculations, and that are promising also because of their
energy efficiency, which is a crucial design in future exascale platforms.Comment: 16 pages, 7 figures, 1 table, accepted for publication in the
Computing Conference 2019 proceeding
The influence of alfalfa-switchgrass intercropping on microbial community structure and function
The use of nitrogen fertilizer on bioenergy crops such as switchgrass results in increased costs, nitrogen leaching and emissions of N2O, a potent greenhouse gas. Intercropping with nitrogen-fixing alfalfa has been proposed as an environmentally sustainable alternative, but the effects of synthetic fertilizer versus intercropping on soil microbial community functionality remain uncharacterized. We analysed 24 metagenomes from the upper soil layer of agricultural fields from Prosser, WA over two growing seasons and representing three agricultural practices: unfertilized switchgrass (control), fertilized switchgrass and switchgrass intercropped with alfalfa. The synthetic fertilization and intercropping did not result in major shifts of microbial community taxonomic and functional composition compared with the control plots, but a few significant changes were noted. Most notably, mycorrhizal fungi, ammonia-oxidizing archaea and bacteria increased in abundance with intercropping and fertilization. However, only betaproteobacterial ammonia-oxidizing bacteria abundance in fertilized plots significantly correlated to N2O emission and companion qPCR data. Collectively, a short period of intercropping elicits minor but significant changes in the soil microbial community toward nitrogen preservation and that intercropping may be a viable alternative to synthetic fertilization
Intelligent search in social communities of smartphone users
Social communities of smartphone users have recently gained significant interest due to their wide social penetration. The applications in this domain,however, currently rely on centralized or cloud-like architectures for data sharing and searching tasks, introducing both data-disclosure and performance concerns. In this paper, we present a distributed search architecture for intelligent search of objects in a mobile social community. Our framework, coined SmartOpt, is founded on an in-situ data storage model, where captured objects remain local on smartphones and searches then take place over an intelligent multi-objective lookup structure we compute dynamically. Our MO-QRT structure optimizes several conflicting objectives, using a multi-objective evolutionary algorithm that calculates a diverse set of high quality non-dominated solutions in a single run.
Then a decision-making subsystem is utilized to tune the retrieval preferences of the query user. We assess our ideas both using trace-driven experiments with mobility and social patterns derived by Microsoft’s GeoLife project, DBLP and Pics
‘n’ Trails but also using our real Android SmartP2P3 system deployed over our SmartLab4 testbed of 40+ smartphones. Our study reveals that SmartOpt yields high query recall rates of 95%, with one order of magnitude less time and two
orders of magnitude less energy than its competitors
Transtendinous course of the infrapatellar branch of saphenous nerve. A contribution to the aetiology of entrapment neuropathy and modification of the existing classification
Background: The course of the infrapatellar branch of saphenous nerve (IPBSN) in relation to the Sartorius muscle has been classified into presartorial, transsartorial and retrosartorial types. Mechanical compression of the IPBSN within the Sartorius tendon has been surgically recognised as a cause of entrapment neuropathy. Purpose of the present study was to differentiate the IPBSNs penetrating the Sartorius tendon from those penetrating the Sartorius muscle, from an anatomical and clinical point of views and thus modifying the existing classification.
Materials and methods: The IPBSN was bilaterally dissected in 27 cadavers. The cases of the IPBSNs penetrating the Sartorius tendon were recorded separately from those penetrating the Sartorius muscle belly.
Results: In 11 out of 54 limbs (20.4%) the IPBSN ran through the Sartorius muscle belly. In 3 out of 54 (5.6%) limbs, the IPBSN penetrated the Sartorius tendon.
Conclusions: The penetrating type of IPBSN includes two distinct subtypes: the muscle-penetrating type and the tendon-penetrating type. These subtypes are also distinct from a clinical point of view, since only the tendon-penetrating type has been associated with the IPBSN entrapment neuropathy. According to these findings we suggest a modification of the current classification. Further clinical studies are necessary to fully demonstrate whether the tendon-penetrating type should be considered as a predisposing factor for the IPBSN entrapment neuropathy. Distinguishing the two subtypes might be helpful for that purpose
Niche differentiation among annually recurrent coastal marine group II Euryarchaeota
Since the discovery of archaeoplankton in 1992, the euryarchaeotal Marine Group II (MGII) remains uncultured and less understood than other planktonic archaea. We characterized the seasonal dynamics of MGII populations in the southern North Sea on a genomic and microscopic level over the course of four years. We recovered 34 metagenome-assembled genomes (MAGs) of MGIIa and MGIIb that corroborated proteorhodopsin-based photoheterotrophic lifestyles. However, MGIIa and MGIIb MAG genome sizes differed considerably (~1.9 vs. ~1.4 Mbp), as did their transporter, peptidase, flagella and sulfate assimilation gene repertoires. MGIIb populations were characteristic of winter samples, whereas MGIIa accounted for up to 23% of the community at the beginning of summer. Both clades consisted of annually recurring, sequence-discrete populations with low intra-population sequence diversity. Oligotyping of filtered cell-size fractions and microscopy consistently suggested that MGII cells were predominantly free-living. Cells were coccoid and ~0.7 µm in diameter, likely resulting in grazing avoidance. Based on multiple lines of evidence, we propose distinct niche adaptations of MGIIa and MGIIb Euryarchaeota populations that are characteristic of summer and winter conditions in the coastal North Sea
- …