53 research outputs found
Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA
Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatization reagent, 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) contains a bromophenethyl group to incorporate an isotopic signature to the derivatives and to add additional fragmentation identifiers, collectively enhancing the abilities for detection and screening of unknown aldehydes. Derivatization can be achieved under mild conditions (pH 5.7, 10 °C). By changing the secondary reagent (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide instead of sodium cyanoborohydride), 4-APEBA is also applicable to the selective derivatization of carboxylic acids. Synthesis of the new label, exploration of the derivatization conditions, characterization of the fragmentation of the aldehyde and carboxylic acid derivatives in MS/MS, and preliminary applications of the labeling strategy for the analysis of aldehydes in urine and plasma are described
The quantitative genetics of sex differences in parenting
Sex differences in parenting are common in species where both males and females provide care. Although there is a considerable body of game and optimality theory for why the sexes should differ in parental care, genetics can also play a role, and no study has examined how genetic influences might influence differences in parenting. We investigated the extent that genetic variation influenced differences in parenting, whether the evolution of differences could be constrained by shared genetic influences, and how sex-specific patterns of genetic variation underlying parental care might dictate which behaviors are free to evolve in the burying beetle Nicrophorus vespilloides. Females provided more direct care than males but did not differ in levels of indirect care or the number of offspring they were willing to rear. We found low to moderate levels of heritability and evolvability for all 3 parenting traits in both sexes. Intralocus sexual conflict was indicated by moderately strong intersex genetic correlations, but these were not so strong as to represent an absolute constraint to the evolution of sexual dimorphism in care behavior. Instead, the pattern of genetic correlations between parental behaviors showed sex-specific tradeoffs. Thus, differences in the genetic correlations between parental traits within a sex create sex-specific lines of least evolutionary resistance, which in turn produce the specific patterns of sex differences in parental care. Our results therefore suggest a mechanism for the evolution of behavioral specialization during biparental care if uniparental and biparental care behaviors share the same genetic influences
The Complete Genome Sequence of Xanthomonas theicola, the Causal Agent of Canker on Tea Plants, Reveals Novel Secretion Systems in Clade-1 Xanthomonads
Xanthomonas theicola is the causal agent of bacterial canker on tea plants. There is no complete genome sequence available for X. theicola, a close relative of the species X. translucens and X. hyacinthi, thus limiting basic research for this group of pathogens. Here, we release a high-quality complete genome sequence for the X. theicola type strain, CFBP 4691T. Single-molecule real-time sequencing with a mean coverage of 264x revealed two contigs of 4,744,641 bp (chromosome) and 40,955 bp (plasmid) in size. Genome mining revealed the presence of nonribosomal peptide synthases, two CRISPR systems, the Xps type 2 secretion system, and the Hrp type 3 secretion system. Surprisingly, this strain encodes an additional type 2 secretion system and a novel type 3 secretion system with enigmatic function, hitherto undescribed for xanthomonads. Four type 3 effector genes were found on complete or partial transposons, suggesting a role of transposons in effector gene evolution and spread. This genome sequence fills an important gap to better understand the biology and evolution of the early-branching xanthomonads, also known as clade-1 xanthomonads
- …