61 research outputs found

    Continuum-based design sensitivity analysis and optimization of nonlinear shell structures using meshfree method

    Get PDF
    A continuum-based shape and configuration design sensitivity analysis (DSA) method for a finite deformation elastoplastic shell structure has been developed. Shell elastoplasticity is treated using the projection method that performs the return mapping on the subspace defined by the zero-normal stress condition. An incrementally objective integration scheme is used in the context of finite deformation shell analysis, wherein the stress objectivity is preserved for finite rotation increments. The material derivative concept is used to develop a continuum-based shape and configuration DSA method. Significant computational efficiency is obtained by solving the design sensitivity equation without iteration at each converged load step using the same consistent tangent stiffness matrix. Numerical implementation of the proposed shape and configuration DSA is carried out using the meshfree method. The accuracy and efficiency of the proposed method is illustrated using numerical examples

    DESIGN SENSITIVITY ANALAYSIS OF NONLINEAR SHELL STRUCTURE WITH FRICTIONLESS CONTACT

    Get PDF
    A continuum-based shape and configuration design sensitivity analysis method for a finite deformation elastoplastic shell structure with frictionless contact has been developed. Shell elastoplasticity is treated based on the projection method that performs the return mapping on the subspace defined by the zero-normal stress condition. An incrementally objective integration scheme is used in the context of finite deformation shell analysis, wherein stress objectivity is preserved for finite rotation increments. The penalty regularization method is used to approximate the contact variational inequality. The material derivative concept is used to develop continuum based design sensitivity. The design sensitivity equation is solved without iteration at each converged load step. Numerical implementation of the proposed shape and configuration design sensitivity analysis is carried out using the meshfree method. The accuracy and efficiency of the proposed method is illustrated using numerical examples

    Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns.</p> <p>Method</p> <p>We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period.</p> <p>Results</p> <p>As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession.</p> <p>Conclusions</p> <p>This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling.</p
    • ā€¦
    corecore