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SUMMARY

A continuum-based shape and configuration design sensitivity analysis (DSA) method for a finite
deformation elastoplastic shell structure has been developed. Shell elastoplasticity is treated using the
projection method that performs the return mapping on the subspace defined by the zero-normal stress
condition. An incrementally objective integration scheme is used in the context of finite deformation
shell analysis, wherein the stress objectivity is preserved for finite rotation increments. The material
derivative concept is used to develop a continuum-based shape and configuration DSA method.
Significant computational efficiency is obtained by solving the design sensitivity equation without
iteration at each converged load step using the same consistent tangent stiffness matrix. Numerical
implementation of the proposed shape and configuration DSA is carried out using the meshfree
method. The accuracy and efficiency of the proposed method is illustrated using numerical examples.
Copyright � 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shell structures are frequently used in the construction of aerospace, automotive, and civil
engineering structures. A significant amount of effort has been put into the design sensitivity
analysis (DSA) and optimization of shell structures [1–12]. Yamazaki and Vandeplaats [3]
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performed sizing and shape DSA of isoparametric shell element using the discrete method.
Linby and Santos [7] proposed method for shape optimization of a shell structure that is
parameterized using a CAD system and discrete method. Moita et al. [8] performed DSA of a
triangular flat plate finite element considering geometric nonlinearity. Choi et al. [9] performed
shape and topology optimization for locating the best positions of joining mechanisms using
a doubly curved shell. In this paper, a continuum-based shape and configuration DSA method
for a finite deformation elastoplastic shell structure is developed.

In the literature, three approaches for DSA have been used for a shell structure: the finite
difference method (FDM), the discrete method, and the continuum-based method. Because
FDM is the simplest method, it is frequently used to optimize shell structures. However, it
lacks accuracy and involves high computational costs. On the other hand, in the discrete DSA
method, the approximated matrix equation is differentiated, and thus the method has difficulty in
obtaining derivatives of numerically constructed stiffness matrices. In the continuum-based DSA
method, the variational equation is differentiated before discretization. Therefore, the continuum-
based DSA method is more efficient and can circumvent the inaccuracy that is associated with
differentiation of the approximated matrix equation in discrete DSA, although it requires lengthy
analytical derivations. In this paper, a continuum-based shape and configuration DSA method
for a finite deformation elastoplastic shell structure is developed.

In the continuum-based DSA, the design sensitivity equation can be discretized using any
numerical method such as finite element method (FEM) or meshfree method. In this paper,
a meshfree method is used to discretize design sensitivity equation. The meshfree method is
an ideal choice in shape and configuration optimization of the nonlinear shell structure since,
compared with FEM, the solution is much less sensitive to the mesh distortion, which could
occur during shape design change and finite deformation nonlinear analysis. More information
of the meshfree discretization of shell structures can be obtained from Kim et al. [12] where
they proposed a continuum-based design sensitivity formulation for the linear shell structures
using the meshfree method. Since no element information is generated in the meshfree method,
surface information from the CAD geometry is necessary for constructing the surface normal
vector and a mapping from the global to local coordinate, both of which are essential in
representing the general curved shell structure. In nonlinear shell analysis, the normal vector
and mapping must be updated using the rotational response at the current configuration in
order to account for the finite rotation increment. Another distinction between the linear and
nonlinear shell structures lies in the integration through the thickness. Given the assumption of
a constant transverse shear deformation, an analytical integration can be performed through the
thickness coordinate in linear shell structures, whereas a numerical integration through thickness
coordinate should be carried out to capture plastic deformation in nonlinear shell structures.

The most widely used integration procedure for plane strain and three-dimensional elasto-
plastic analysis is the radial return mapping algorithm. Since the return mapping algorithm
is strain driven, three-dimensional return mapping algorithms can be easily modified for the
plane strain problem. Shell elastoplastic integration, however, is nontrivial because of its zero
normal stress condition. There are two approaches: the iterative method with a zero normal
stress condition, which is based on the use of the three-dimensional plasticity model, and the
projection method, which performs return mapping on the subspace defined by the plane stress
condition proposed by Simo and Taylor [13] and Simo and Kennedy [14].

Among several incrementally objective integration schemes in finite deformation analysis, in
which stress objectivity is preserved for finite rotation increments, the Hughes–Winget algorithm

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:231–266



CONTINUUM-BASED DESIGN SENSITIVITY ANALYSIS 233

[15–17] is used in this paper. This algorithm is used for DSA because any formulation of
the tangent stiffness matrix, which is critical for efficient DSA that is consistent with other
integration scheme is not yet available. In addition, the Hughes–Winget algorithm provides the
possibility of using an existing small-strain shell elastoplastic integration procedure without
modification.

The organization of this paper is as follows. In Section 2, the CAD geometry-based shell
kinematic is explained. The nonlinear variational equation of finite deformation elastoplastic
shell structure is presented in Section 3. The continuum-based DSA method is developed in
Section 4. A meshfree discretization is presented in Section 5, followed by numerical examples
of DSA and optimization in Section 6, where the accuracy and efficiency of the proposed
method is shown.

2. CAD GEOMETRY-BASED SHELL KINEMATICS

A general shell structure is represented by the thickness and neutral surface as shown in
Figure 1(a)–(c). Figure 1(c) and (d) show the neutral surface geometry and its transformation
(mapping) into the parametric coordinate, respectively. A neutral surface can be constructed by
using the CAD geometry data. In the CAD tool, a general neutral surface geometry in a three-
dimensional space can be represented by using two parameters as [18, 19]

xn(�, �) = U(�)TMGMTW (�) (1)

where U(�) = [�3, �2, �, 1]T and W (�) = [�3, �2, �, 1]T are vectors in the parametric coordi-
nates, and the superscript n denotes the point on the neutral surface. In (1), M is the matrix
defined as

M =

⎡
⎢⎢⎢⎢⎢⎣

2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (2)

Figure 1. Shell structure.
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and G is the surface geometric matrix defined as

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

p00 p01 p
�
00 p

�
01

p10 p11 p
�
10 p

�
11

p
�
00 p

�
01 p

��
00 p

��
01

p
�
10 p

�
11 p

��
10 p

��
11

⎤
⎥⎥⎥⎥⎥⎥⎦

4×4×3

(3)

where pij are coordinates of the corner points on the surface, p
�
ij and p

�
ij are the tangent

vectors in � and � directions, and p
��
ij are the twist vectors.

The normal vector of the shell can be obtained from the neutral surface representation as

n(�, �) = xn
,� × xn

,�

‖xn
,� × xn

,�‖
(4)

where, from (1)

xn
,� = UT

,�(�)MGMTW (�) (5)

xn
,� = U(�)TMGMTW,�(�) (6)

For the shell structure with thickness t (�, �), any points within the structure can be ex-
pressed by

x(�, �, �) = U(�)TMGMTW (�) + �
t

2
n(�, �) (7)

where � = [−1, 1] is the third parametric coordinate in the thickness direction, and n(�, �) is
the outward unit vector of the surface that is obtained from (4). The Jacobian of the mapping
between physical and parametric coordinate can be obtained from (7) as

x,� = UT
,�MGMTW + �

t

2
n,�

x,� = UTMGMTW,� + �
t

2
n,�

x,� = t

2
n

(8)

The notations x = [x, y, z]T ≡ [x1, x2, x3]T and � = [�, �, �]T ≡ [�1, �2, �3]T will be used in
the following derivations. Using these notations, the Jacobian of the mapping can be re-
presented by

J = �xi

��j

(9)
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For the shell structure, the constitutive relation is given in the body-fixed, local coordinate,
whereas a displacement–strain relation is provided in the global coordinate. The unit vectors
in the local coordinate are calculated as

l = xn
,�

‖xn
,�‖

, n = xn
,� × xn

,�

‖xn
,� × xn

,�‖
, m = n × l (10)

Using the relation in (10), the coordinate transformation can be obtained as

x =

⎡
⎢⎢⎣

l1 m1 n1

l2 m2 n2

l3 m3 n3

⎤
⎥⎥⎦ x′ (11)

where x′ is the global coordinate of the corresponding point x in the local coordinate.
In the shell analysis, the flat cross-section remains flat during deformation. Thus, the dis-

placement varies linearly in the thickness direction; and can be represented by the addition of
two terms as

z = z1(�, �) + �z2(�, �) (12)

where z1(�, �) represents the incremental displacement of the neutral surface and �z2(�, �)

denotes the incremental rotation of the cross-section.
The strain tensor can be expressed as

�ij (z) = 1

2

(
�zi

�xj

+ �zj

�xi

)
= 1

2

(
�zi

��m

��m

�xj

+ �zj

��m

��m

�xi

)
(13)

where the summation convention is used for repeated indices. Similar to the displacement, the
strain tensor in (13) can also be represented by the addition of two terms

�ij (z) = �1
ij (z) + ��2

ij (z) (14)

where

�1
ij (z) = 1

2

(
�z1

i

��m

J−1
mj + �z1

j

��m

J−1
mi + z2

i J
−1
3j + z2

j J
−1
3i

)
(15)

and

�2
ij (z) = 1

2

(
�z2

i

��m

J−1
mj + �z2

j

��m

J−1
mi

)
(16)

are the membrane–shear strain and bending strain, respectively. In the finite rotation nonlinear
shell problem, the strain tensor is calculated at the midpoint configuration to obtain a second-
order accuracy, which will be explained in the following section.
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3. VARIATIONAL EQUATION OF FINITE DEFORMATION ELASTOPLASTIC
SHELL STRUCTURE

3.1. Shell elastoplastic analysis

A brief review of shell elastoplastic analysis is presented to introduce notations that appear in
the following DSA section. One complexity in the shell elastoplastic analysis is that the plastic
evolution appears in deviatoric space, while the zero normal stress condition is imposed in
stress space. The deviatoric stress s̃ is defined using the Cauchy stress �̃ as

s̃ =

⎡
⎢⎢⎣

s11 s12 s13

s21 s22 s23

s31 s32 s33

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

�11 �12 �13

�21 �22 �23

�31 �32 �33

⎤
⎥⎥⎦− (�11 + �22 + �33)

3

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ (17)

Let V S be the vector space of symmetric order-2 stress tensors. Thus, dim V S = 6. The shell
stress subspace V P is obtained by imposing the zero normal stress condition as

V P ≡ {� ∈ V S |�33 = 0} (18)

Similarly, the corresponding deviatoric subspace V D is defined as

V D ≡ {s ∈ V S |skk = 0} (19)

Therefore, dim V P = dimV D = 5. Vector notations are employed to represent each vector as

� = [�11 �22 �12 �23 �31]T (20)

s = [s11 s22 s12 s23 s31]T (21)

Although s33 is not included in (21), it is nonzero and can be calculated from the constraint
skk = 0. Since the imposition of the zero normal stress constraint is not straightforward in the
deviatoric subspace, the mapping relation between � ∈ V p and s ∈ V D is required. In matrix
form it is

s = P�, P = 1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0

−1 2 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

Using the same mapping matrix, the back stress � ∈ V p and its deviatoric part �′ ∈ V p is
related by

�′ = P� (23)
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The strain tensor can be expressed as in (13)

�ij (z) = 1

2

(
�zi

�xj

+ �zi

�xj

)
(24)

Since the vector notations are used to represent the stress, the strains also need to be expressed
in vector notation. They have a dimension of five and take the vector form of

� = [�11 �22 2�12 2�23 2�31]T (25)

�p = [�p
11 �p

22 2�p
12 2�p

23 2�p
31]T (26)

From small elastic strain and small rigid-body rotation assumptions, the strain and its rate can
be additively decomposed into elastic and plastic part as

� = �e + �p, �̇ = �̇e + �̇p (27)

The constitutive equation is written as

� = D�e (28)

where D is the elastic constitutive matrix after enforcing zero normal stress constraint.
In rate-independent plasticity, the von Mises yield criterion with an associative flow rule is

the well-known method, which is used in this paper. Accordingly, the yield function is defined
as

f ≡ 1
2�TP� − 1

3�2(ep) � 0 (29)

where � ≡ �−�; �(ep) is the radius of the yield surface, which is determined by the isotropic
hardening rule; and P is the mapping matrix modified from P in order to account for the
factor of two in the shear strain component, written as

P ≡ 1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0

−1 2 0 0 0

0 0 6 0 0

0 0 0 6 0

0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

In the following, a linearly combined isotropic–kinematic hardening rule is used as

�(ep) = �0 + �Hep (31)

where ep is an effective plastic strain; � is one when the pure isotropic hardening rule is used,
and zero when the pure kinematic hardening rule is used; �0 is the initial yield stress; and
H is the hardening parameter. The back stress can be determined by the kinematic hardening
rule as

�̇ = 2
3�(1 − �)H� (32)
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where � is a plastic consistency parameter, which is zero when the material is in the elastic
status and positive when it is in the plastic status. In this section only, the superposed dot will
be used to denote the rate of the variable, whereas in the rest of the paper, it denotes the
material derivative (see Section 4). Since the associative flow rule is used, the plastic strain is
proportional to the normal of the yield surface. Thus,

�̇p = �P� (33)

The rate of effective plastic strain can be expressed as

ėp =
√

2
3�	 (34)

where 	 = [�TP�]1/2. Loading/unloading conditions can be formulated using the Kuhn–Tucker
condition as

f � 0, � � 0, �f = 0 (35)

where the nonpositive property of the yield function is regarded as an inequality constraint and
the plastic consistency parameter � as the corresponding Lagrange multiplier.

3.2. Numerical integration procedure for shell elastoplastic analysis

The basic problem of integrating elastoplastic constitutive equations can be stated as follows.
On the time interval of interest [0, T ], it is assumed that at time tn the total and plastic strain
fields and the back stress field are all known; that is,

{n�, n�p, nep, n�} are known fields at time tn (36)

In the displacement-driven solution procedure, the incremental displacement field over the time
step [tn, tn+1] is available, from which the incremental strain �� can be calculated. From
additive decomposition, the strain at time tn+1 can be calculated by

n+1� = n� + �� (37)

The remaining independent variables must be updated using the integration algorithm.
A standard backward Euler method is used to integrate the rate-form elastoplastic equations.
First, it is assumed that the incremental strain is elastic, which means that all plastic variables
remain fixed. Using the subscript ‘tr’ to denote the trial status, the following relations are
obtained:

�p
tr = n�p

�tr = n�

e
p
tr = nep

�tr = D(n+1� − n�)

�tr = �tr − �tr

(38)
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Using this trial status, the yield function in (29) is evaluated. If f � 0, then the trial status is
the final status and the material is in the elastic range.

Otherwise the material is in the plastic range, and return mapping is performed to find
the nonnegative consistency parameter �� = ��t , which makes the yield function vanish, i.e.
f (��) = 0. The backward Euler integration algorithm of the rate-form evolution equations can
be written as

n+1�p = n�p + ��P n+1�

n+1� = n� + 2
3��(1 − �)H n+1�

n+1ep = nep +
√

2
3�� n+1	

n+1� = D(n+1� − n+1�p)

n+1� = n+1� − n+1�

(39)

The plastic consistency parameter �� is obtained by enforcing the plastic consistency con-
dition at tn+1. After inserting the relations in the above equation into (29) with f = 0, the
consistency condition is written in the form

n+1	 =
√

2
3 [0� + �H nep] + 2

3�H�� n+1	 (40)

The above equation is a nonlinear algebraic equation, which is solved for �� using the
Newton–Raphson iterative method. After solving �� from (40), all independent variables in
(39) are updated at time tn+1. The integration algorithm in (39) preserves the zero normal stress
condition.

3.3. Finite deformation shell analysis

The theories involving various objective rates of rotational type can be cast into a uniform
format, form identical to small deformation theory. They take on canonically simple forms when
transformed to rotation-free configuration. Therefore, the way that the finite incremental rotation
is evaluated is the key difference between these schemes. Among the several incrementally
objective integration schemes, the Hughes–Winget algorithm is used in this paper. The algorithm
is summarized as

n+1�g
ij = rik

n�g
klrj l + ��g

ij (41)

where the second term on the right side represents the material response and is determined by
the numerical integration procedure presented in the previous section, whereas the first term
accounts for rotational effects, and where rij is defined using the midpoint rule as

rij = 
ij + (
ik − 1
2��ik)

−1��kj (42)
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In (41), the superscript ‘g’ denotes the quantity in the global coordinate. The strain and rotational
increments are calculated at the midpoint configuration to obtain a second-order accuracy as

��g
ij = 1

2

(
��zi

� n+(1/2) xj

+ ��zj

� n+(1/2)xi

)
(43)

��ij = 1

2

(
��zi

� n+(1/2)xj

− ��zj

� n+(1/2)xi

)
(44)

where n+(1/2)xi = nxi + 1
2�zi .

If the global stress vector is defined as

�g ≡ [�11 �12 �13 �21 �22 �23 �31 �32 �33]T (45)

then (41) can be written in vector notation as

n+1�g = R n�g + ��g (46)

where R is the 9 × 9 rotational matrix defined as Rijkl = rikrj l .
The key advantage of the Hughes–Winget algorithm is the ability to use the small deformation

integration procedure introduced in the previous section where the stress vector is defined in
body-fixed local coordinate. The global stress can be transformed to the local stress by using
the 9 × 9 transformation matrix as

n+1�l = n+1Q n+1�g, n+1�g = n+1QT n+1�l (47)

where the global-to-local transformation matrix at current configuration n+1Q must be updated
consistently using the finite deformation integration algorithm as

n+1QT = R nQT, n+1Q = nQRT (48)

The initial global-to-local transformation matrix 0Q is constructed using three local vectors in
(10) as

0Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l2
1 l1m1 l1n1 m1l1 m2

1 m1n1 n1l1 n1m1 n2
1

l1l2 l1m2 l1n2 m1l2 m1m2 m1n2 n1l2 n1m2 n1n2

l1l3 l1m3 l1n3 m1l3 m1m3 m1n3 n1l3 n1m3 n1n3

l2l1 l2m1 l2n1 m2l1 m2m1 m2n1 n2l1 n2m1 n2n1

l2
2 l2m2 l2n2 m2l2 m2

2 m2n2 n2l2 n2m2 n2
2

l2
0l3 l2m3 l2n3 m2l3 m2m3 m2n3 n2l3 n2m3 n2n3

l3l1 l3m1 l3n1 m3l1 m3m1 m3n1 n3l1 n3m1 n3n1

l3l2 l3m2 l3n2 m3l2 m3m2 m3n2 n3l2 n3m2 n3n2

l2
3 l3m3 l3n3 m3l3 m2

3 m3n3 n3l3 n3m3 n2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)
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Since the strain increment is evaluated at the midpoint, it needs to be rotated to the midpoint
configuration as

��l = nQ 1/2RT��g ≡ n+(1/2)Q��g (50)

Note that the global stress at current configuration is transformed to the local stress by trans-
formation matrix n+1Q as in (47), whereas the global strain is transformed to the local strain
by transformation matrix n+(1/2)Q. The rotation matrix 1/2R is approximated with half dis-
placement as 1/2Rijkl = 1/2rik

1/2rjl where

1/2rij ∼= 
ij + 1
2 (
ik − 1

4��ik)
−1��kj (51)

Despite the fact that this approximation does not satisfy the condition r = 1/2r 1/2r , the error
is in second order and its material derivative is much simpler than the exact one.

In order to consider the finite deformation problem, it is necessary to obtain the updated
normal vector and two tangent vectors due to the finite incremental rotation. The updated
vectors are calculated as

n+1l = r nl

n+1m = r nm

n+1n = r nn

(52)

3.4. Variational equation

If the structural domain at current time tn+1 is n+1� and previous time tn is n�, then the
structural energy form at the current configuration is written as

a(n+1z, z) =
∫ ∫ ∫

n+1�
zi,n+1xj

n+1�ij d� =
∫ ∫ ∫

n�
zi,nxmF−1

mj
n+1�ij J1 d� (53)

where z denotes the displacement variation or the virtual displacement, Fij is the deformation

gradient defined as Fij = �n+1
xi/�

n
xj , and J1 ≡ |F | is the determinant of the deformation

gradient. If a conservative force system is considered, then the external force is independent
of the deformation. If we let f B be the body force per unit volume, then the load linear form
can be written as

�(z) =
∫ ∫ ∫

n+1�
zif

B
i d� =

∫ ∫ ∫
n�

zif
B
i J1 d� (54)

By equating (53) and (54), the variational equation for the nonlinear shell structure is obtained
as

a(n+1z, z) = �(z) for all z ∈ Z (55)

where

Z = {z ∈ [H 1(�)]3|z(x) = 0, x ∈ �g} (56)

is the space of kinematically admissible displacements, H 1(�) is first-order Sobolev space,
and �g is the essential boundary where the displacement is prescribed. The nonlinear equation
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in (55) can be solved using the Newton iterative method through linearization. The linearized
equation is

a∗(n+1zk; �zk+1, z) = �(z) − a(n+1zk, z) (57)

For a given load step, (57) is solved iteratively until the right-hand side (residual force) vanishes.
The expression of a∗(n+1zk; �zk+1, z) will be derived in the next section for DSA.

4. DSA OF FINITE DEFORMATION ELASTOPLASTIC SHELL STRUCTURE

Even though the adjoint variable method shows a significant efficiency for linear shell problems
[12] with a large number of design variables, only the direct differentiation method is developed
here because of the path-dependency of the elastoplastic problem.

4.1. Material derivative

The first step in DSA is to develop relationship between design variation and the resulting
performance measure variations of the structural problem. In the DSA of shell structure, shape
and configuration designs are related to the structural domain change. Therefore, it is conve-
nient to use the material derivative in continuum mechanics to represent the structural domain
variation. In order to develop first-order design sensitivity, the material point at time tn in the
perturbed domain is expressed in terms of a linear design velocity as

nx� = nx + �nV (58)

where nV (x) is the design velocity field at time tn and � is a scalar parameter that controls
the amount of perturbation. If the structural domain changes, then the value of incremental
displacement �z(nx) also changes, in addition to its location of measurement. The point wise
material derivative of incremental displacement �z(nx) is defined as the total variation of
�z�(

nx + � nV ) in the direction of nV (nx), evaluated at � = 0, as

�ż = d

d�
�z�(

nx + � nV )|�=0 = lim
�→0

[
�z�(

nx + � nV ) − �z(nx)

�

]
(59)

Unlike in Section 3, the superposed dot will be used to denote the material derivative of the
variable in the rest of this paper.

4.2. Design velocity in CAD geometry-based shell structure

In the updated Lagrangian formulation, the reference frame is updated after each incremental
analysis using the following relation:

nx = 0x + nz (60)

where nz is the sum of the incremental displacement up to time tn. By differentiating the above
relation, the following design velocity update formula is obtained:

d

d�
(nx�)

∣∣∣∣
�=0

= d

d�
(nx� + nz�)

∣∣∣∣
�=0

= 0V + nż = nV (61)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:231–266



CONTINUUM-BASED DESIGN SENSITIVITY ANALYSIS 243

Figure 2. Design perturbation.

The computation of design velocity 0V of the undeformed configuration is directly related
to the parametric representation of the neutral surface, as given in (1). For example, Figure 2
shows shell structure, which is composed of three surfaces. Each surface is characterized by its
surface geometric matrix Gi=1,2,3 as in (3). If the corner radius R is considered as a design
parameter, the design dependence of the surface is written as

0xi (R) = U(�)TMGi (R)MTW (�), i = 1, 2, 3 (62)

Since geometric matrix Gi (R) is a function of the corner radius R, the design velocity can be
obtained by perturbing R to R + �
R, and the differentiating with respect to � as

0Vi = d0xi (R + �
R)

d�

∣∣∣∣
�=0

= U(�)TM

(
�Gi

�R

R

)
MTW (�)

= U(�)TM(Gnew
i − Gi )M

TW (�) (63)

where Gnew
i is a geometric matrix of each surface when the corner radius is changed to Rnew

using the CAD geometry.

4.3. Design sensitivity analysis

A performance measure defined as


 =
∫ ∫ ∫

�
g(z, u) d� (64)
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where the function g is assumed to be continuously differentiable with respect to its arguments.
Differentiating the functional with respect to the design u yields


′ = d

d�

[∫ ∫ ∫
�

g(z, u) d�

]∣∣∣∣
�=0

=
∫ ∫ ∫

�
(gT

,zż + g div V + g,u
u) d� (65)

The direct differentiation method computes the first integrand on the right side of (65) by
directly computing from the design sensitivity equation, which can be obtained by differentiating
(55) with respect to the design variable. Since the applied load is assumed to be conservative,
the differentiation of the load linear form can be carried out to obtain

d

d�
�(z)

∣∣∣∣
�=0

=
∫ ∫ ∫

n�
(zif

B
i div V )J1 d� ≡ �′

V (z) (66)

The material derivative of the structural energy form can be obtained as

d

d�
[a(n+1z, z)]

∣∣∣∣
�=0

=
∫ ∫ ∫

n�
[(zi,nxm)·F−1

mj
n+1�g

ij J1 + zi,nxmḞ−1
mj

n+1�g
ij J1

+zi,nxmF−1
mj

n+1�̇g
ij J1 + zi,nxmF−1

mj
n+1�g

ij J̇1

+zi,nxmF−1
mj

n+1�g
ij div nV J1] d� (67)

The material derivative terms in (67) will be investigated in the following. First, the material
derivative of the gradient of the virtual displacement with respect to the position vector at the
previous configuration can be found in Reference [19] as

(zi,nxm)· = −zi,nxk

nVk,nxm (68)

Define �Vim(z) as the multiplication of the above term with the deformation gradient as

�Vim(z) ≡ (zi,nxm)·F−1
mj = −zi,nxk

nVk,nxmF−1
mj (69)

The material derivative of the inverse of the deformation gradient and the Jacobian are obtained
by exploiting well-known kinematic relations as [20]

Ḟ−1
mj = −F−1

ml �żl,n+1xj
, J̇1 = J1�żk,n+1xk

(70)

Since the elastoplastic integration is performed with local stress, the material derivative of
global stress needs to be derived from the local stress and transformation matrix as

n+1�̇g = n+1Q̇T n+1�l + n+1QT n+1�̇l (71)

The material derivative of local stress can be obtained from the constitutive relation in (39),
which can be summarized as

n+1� = n� + D�� − ��DP n+1� (72)

and its material derivative as

n+1�̇ = n�̇ + D��̇ − ��̇DP n+1� − ��DP (n+1�̇ − n+1�̇) (73)
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where the elastic constitutive matrix D and the mapping matrix P are independent of design
variables. The right side of (73) includes n�̇, which is computed at the previous time step; ��̇,
which is a function of the unknown ż; and n+1ȧ and ��̇, which are to be obtained from shell
elastoplastic equations.

The material derivative of back stress can be obtained from the second equation in (39) as

n+1�̇ = 1

f1

n�̇ + f ′
1

f1
(��̇ n+1� + �� n+1�̇) (74)

where f1 = 1+ 2
3��H(1−�) and f ′

1 = 2
3H(1 − �). The material derivative of plastic consistency

parameter �� can be obtained from the consistency condition in (40) as

��̇ = (1 − 2
3�H��)

2
3H n+1	2 [n+1�TP n+1�̇ − n+1�TP n�] −

√
3
2�f1

n+1	
nėp (75)

Inserting (74) and (75) into (73) and defining f2= 2
3H n+1	2+(1− 2

3�H��)n+1�TP�DP n+1�,
f3 = f1(1 − 2

3�H��)/f2, and � = [f1I +��DP ]−1, yields the final expression for the material
derivative of the local stress as

n+1�̇ = Dep��̇ + �fic_l (76)

where

Dep =
⎧⎨
⎩

D (elastic)

f1�D − f3�DP n+1� n+1�TPD� (plastic)
(77)

�fic_l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n�̇l (elastic)

[f1� − f3�DP n+1� n+1�TP�] n�̇l

+ [���DP − f3���DP n+1� n+1�TP�DP

+ f3���DP n+1� n+1�TP ] n�̇

+
f1

√
2
3�H	

f2
�DP n+1� nėp (plastic)

(78)

For a small deformation problem, the sensitivity equation can be set up by inserting (71)
and (76) into the material derivative of structural form in (67) and equating it with the material
derivative of load linear form in (66) with small deformation assumptions n+1Q = nQ, F = I .

In order to extend the sensitivity equation to the finite deformation problem, material deriva-
tives of rotation matrices in the stain increment as in (50) and in the global-to-local transfor-
mation matrix as in (48) must be considered as

��̇l = nQ̇1/2RT��g + nQ 1/2ṘT��g + nQ1/2RT��̇g (79)

n+1Q̇T n+1�l = Ṙ nQT n+1�l + R nQ̇T n+1�l (80)
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For notational simplicity, the following relations are used:

1/2ṘT��g = A� 1/2ṙ, ṘQT n+1�l = A�ṙ (81)

where

A�
ijkl = (
km
inrlj + 
lm
nj rki)��g

kl

A�
ijkl = (
im
knrjl + 
jm
nlrik)

nQpqkl
n+1�l

pq

(82)

Taking the material derivative of (42) and (51) yields

ṙ = B���̇, 1/2ṙ = B���̇ (83)

where

B�
ijkl = (4
ik − ��ik)

−1(
lj + rlj )

B�
ijkl = (2
ik − ��ik)

−1(
lj + rlj )

(84)

The remaining steps in the procedure involve taking the material derivative of ��g
ij and ��ij

consistently with the midpoint rule. Both terms contain the material derivative of the gradient
of the displacement increment with respect to the position vector at the midpoint configuration.
Their material derivative thus becomes

(�zi,n+1/2xj
)· = Mijkl(�zk,nxp )· nxp,n+1xl

= Mijkl[�żi,n+1xj
+ �Vkl(�z)] (85)

where

Mijkl = nxi,n+1/2xk

n+1xl,n+1/2xj
(86)

A detailed derivation of Mijkl can be found in the literature by Fish and Shek [17]. By dividing
the material derivative of ��g

ij and ��ij into symmetric and antisymmetric parts, it can be
expressed as

��̇ij = M(ij)kl[�żi,n+1xj
+ �Vkl(�z)]

��̇ij = M[ij ]kl[�żi,n+1xj
+ �Vkl(�z)]

(87)

Define �żi,n+1xj
≡ v̇i,n+1xj

for notational convenience. The final expression for the material
derivative of global stress is obtained by inserting (76), (79), (80), and (87) into (71) as

n+1�̇g = Calgv̇ + �fic_g (88)

where

Calg = [A�B�M̂ + n+1QTDep nQA�B�M̂ + n+1QTDep n+1/2QM̃] (89)

�fic_g = R nQT n+1�l + n+1QTDep nQ̇ 1/2RT��g + n+1QT�fic_l (90)
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By using the relations in (68), (70), and (88), the material derivative of the structural energy
form become

d

d�
[a(n+1z, z)]

∣∣∣∣
�=0

= a∗(n+1z; �ż, z) + a′
V (n+1z, z) (91)

where

a∗(n+1z; �ż, z) =
∫ ∫ ∫

n+1�
zi,xj

[Calg
ijkl + 
kl�

g
ij − 
kj�il]�żk,xl

d� (92)

is in the same form as the linearized structural energy form in (57) if �z is substituted into
�ż. In addition,

a′
V (z, z) ≡

∫ ∫ ∫
n+1�

[�Vij (z)�g
ij + zi,xj

C
alg
ijkl�

V
ij (�z) + zi,xj

�fic_g
ij + zi,xj

�g
ij div nV ] d� (93)

is the structural fictitious load form, which explicitly depends on the design velocity field nV .
After a converged solution is obtained at tn+1, (93) is computed using the given design velocity
field. By combining (66) and (91), the material derivative of the variational equation is obtained
as

a∗(n+1z; �ż, z) = �′
V (z) − a′

V (n+1z, z) (94)

which is solved using the already decomposed tangent stiffness matrix at the converged config-
uration with a different fictitious load for each shape design variable. Although analysis requires
an iterative method, note that the sensitivity equation in (94) is solved without iteration since
a∗(n+1z; �ż, z) is form-identical in nonlinear analysis.

5. MESHFREE DISCRETIZATION

Two numerical procedures are required to solve the linearized incremental equation in (57) and
design sensitivity equation in (94); which are the interpolation method for the state variable and
the domain integration method. The FEM approximates the state variable within an element
by using piecewise polynomials. Therefore, this approximation inevitably depends on the finite
element shape. In addition, since the Gauss integration method maps the finite element onto
the reference element, the Jacobian matrix for the mapping depends on the finite element
shape.

In the meshfree method, the state variable is approximated using a supporting set of particles
in the global sense. Combined with the stabilized conforming (SC) nodal integration, the
meshfree method can alleviate mesh-dependent interpolation and integration accuracy problems.
Although in the initial development [21–25], the meshfree shape function is constructed from
the global particle distribution, a modified approach is used in this research, such that the
meshfree shape function is constructed in the parametric space �r that corresponds to the
neutral surface.

5.1. Meshfree method for shell structure

In the meshfree method for the shell structure, the parametric domain �r of the structure is
discretized by an NP number of meshfree particles. The reproducing kernel (RK) approximation
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of a state variable z(�, �) is [22]

zR(�, �) =
NP∑
I=1

�I (�, �)dI (95)

where dI is the approximation coefficient corresponding to the particle point (�I , �I ) and �I

is the meshfree shape function. �I is constructed from the smoothness requirement and the
completeness condition [22]. In this paper, the cubic spline kernel function and second-order
completeness condition are considered.

The shape function �I in (95) is constructed as

�I (�, �) = �I (�) = C(�; � − �I )	a(� − �I ) (96)

where 	a(� − �I ) is a kernel function that covers all meshfree particles within compact sup-
port size ‘a’ and C(�; � − �I ) is a correction function [22]. For the general two-dimensional
parametric domain, the kernel function in each coordinate is multiplied to obtain

	a(� − �I ) = 	a(� − �I )	a(� − �I ) (97)

Note that the nonzero region of the shape function is limited to within the compact support of
the kernel function. Therefore, the summation in (95) need not be carried out over the entire
NP number of meshfree particles. If IP is the number of meshfree particles that the support
size covers, the summation is carried out over the IP number of meshfree particles.

The correction function in (96) is obtained from the requirement of representing a zero-, first-,
and second-order polynomials exactly, and it can be constructed using a linear combination of
the complete, second-order monomial bases as

C(�; � − �I ) = HT(� − �I )q(�) (98)

where

H (� − �I ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

� − �I

� − �I

(� − �I )
2

(� − �I )(� − �I )

(� − �I )
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(99)

is the vector of monomial bases and q(�) = [q1, q2, q3, q4, q5, q6]T is the coefficient vector,
which is calculated according to the reproducing condition, such that the interpolation in (96)
is exact up to the second-order derivatives of function zR(�, �), which becomes a matrix
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equation as

M(�)q(�) = H (0) (100)

where

M(�) =
IP∑

I=1
H (� − �I )H

T(� − �I )	a(� − �I ) (101)

By substituting solution q(�) from (100) into (98), the correction function C(�; � − �I ) can
be calculated, provided that M(�) is nonsingular. The compact support size ‘a’ has to be chosen
to guarantee the positive definiteness of M(�), which is related to the order of basis function
and the particle distribution density.

The RK approximation of state variable z(�, �) is obtained by substituting the correction
function in (98) into (96) as

zR(�, �) =
IP∑

I=1
HT(0)M−1(� − �I )H (� − �I )	a(� − �I )dI =

IP∑
I=1

�I (�, �)dI (102)

5.2. Strain smoothening and nodal integration

The domain integration in the Galerkin meshfree methods adds considerable complexity to
solution procedures. The direct nodal integration, on the other hand, leads to a numerical
instability due to under-integration. A strain smoothing stabilization for the nodal integration
can be used to eliminate spatial instability in the nodal integration [24]. For convergence, an
integration constraint (IC) is introduced as a necessary condition for a linear exactness in the
meshfree Galerkin approximation.

In order to regularize the instability due to strain localization, a strain smoothing method
[24] was used in which strain is averaged over given domain using a distribution function as

zi,j (�L) =
∫ ∫

�L

zi,j (�)�(�; � − �L) d� (103)

where �L is the nodal domain associated with particle point �L as shown in Figure 3.
If a following distribution function is used

�(�; � − �L) =
{

1/AL, � ∈ �L

0, � ∈ �L

where AL =
∫ ∫

�L

d� (104)

then, combined with the divergence theorem, a smoothed strain becomes

zi,j (�L) = 1

AL

∫ ∫
�L

zi,j d� = 1

AL

∫
�L

zinj d� (105)

where n is the outward normal vector at the boundary �L. Note that the integrand has changed
from the derivative of displacement into a multiplication of a displacement and a normal vector
by employing the divergence theorem. In addition, Chen et al. [24] showed that the smoothed
strain in (105) satisfies IC regardless of the numerical integration method employed.
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Figure 3. Geometry definition of a nodal representative domain.

If the boundary is represented by a combination of linear boundary segments, the smoothed
strain in (105) can be evaluated using a two-point trapezoidal rule for each boundary segment
�L as

zi,j (�L) = 1

AL

∫
�L

zinj d� = 1

AL

IP∑
I=1

∫
�L

�I dI inj d�

= 1

AL

IP∑
I=1

NS∑
M=1

1

2
lMnM

j (�I (�
M+1
L ) + �I (�

M
L ))dIi ≡

IP∑
I=1

�SC
I,j dI i (106)

where lM is the length of the Mth boundary segment, and NS is the number of boundary
segments. Therefore, two kinds of derivative of shape functions are calculated in advance and
stored for later use: �DN

I,j is calculated for the direct nodal integration at each meshfree particle
from (96) as

�DN
I,j (�, �) ≡ ��I (�)

��j

= �[C(�; � − �I )	a(� − �I )]
��j

(107)

and �SC
I,j is calculated by the smoothed conforming nodal integration as in (106).

5.3. Discretization of the shear–deformable shell structure

By using (102), the incremental displacement at a point in shell structure can be approximated
using the meshfree shape function and the generalized displacement as

�z(�, �, �) =
IP∑

I=1
�I (�, �)�dI +

IP∑
I=1

�I (�, �)
tI

2
�[lI , −mI ]

[
��I

��I

]
(108)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:231–266



CONTINUUM-BASED DESIGN SENSITIVITY ANALYSIS 251

where �dI = [�dI1, �dI2, �dI3] is the generalized displacement vector, ��I and ��I are the
generalized rotation vectors with respect to mI and lI , respectively, and IP is the number of
particles in support. Define �r ≡ [�dI1, �dI2, �dI3, ��I , ��I ]T.

The gradient of the incremental displacement with respect to the position vector is calculated
using the chain rule as

��zi

� n+1xj

= ��zi

��k

��k

� nxl

� nxl

� n+1xj

(109)

where ��k/� nxl can be obtained by inverting the following relation:

� nxk

��l

= �(0xk + nzk)

��l

= � 0xk

��l

+ � nzk

��l

(110)

where � 0xk/� �l is obtained from relation in (9) and � nzk/��l is calculated from the nzk .
The gradient of the incremental displacement with respect to the parametric coordinate can be
obtained from (108) as

��zi

��k

=
IP∑

I=1
G1

I�rI + �
IP∑

I=1
G2

I�rI (111)

where

G1
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�DN
I,� 0 0 0 0

�DN
I,� 0 0 0 0

0 0 0 1
2�I tI lI1 − 1

2�I tImI1

0 �DN
I,� 0 0 0

0 �DN
I,� 0 0 0

0 0 0 1
2�I tI lI2 − 1

2�I tImI2

0 0 �DN
I,� 0 0

0 0 �DN
I,� 0 0

0 0 0 1
2�I tI lI3 − 1

2�I tImI3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(112)
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is the contribution from the membrane and transverse shear, and

G2
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
2�SC

I,�tI lI1 − 1
2�SC

I,�tImI1

0 0 0 1
2�SC

I,�tI lI1 − 1
2�SC

I,�tImI1

0 0 0 0 0

0 0 0 1
2�SC

I,�tI lI2 − 1
2�SC

I,�tImI2

0 0 0 1
2�SC

I,�tI lI2 − 1
2�SC

I,�tImI2

0 0 0 0 0

0 0 0 1
2�SC

I,�tI lI3 − 1
2�SC

I,�tImI3

0 0 0 1
2�SC

I,�tI lI3 − 1
2�SC

I,�tImI3

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(113)

is the contribution from the bending.
It is well known that when a full integration is used to evaluate the membrane–shear part,

the numerical solution exhibits shear and membrane locking. Therefore, two kinds of derivative
of the meshfree shape function are calculated using (106) and (107): one is constructed based
on the direct nodal integration for the membrane and transverse shear, �DN

I,� and �DN
I,� , as in

(112); and the other is constructed based on the SC nodal integration for the bending, �SC
I,� and

�SC
I,�, as in (113). The gradient of the incremental displacement with respect to the position

vector in (109) can be obtained using above equations as[
��zi

� nxj

]
9×1

=
IP∑

I=1
T G1

I�rI + �
IP∑

I=1
T G2

I�rI ≡
IP∑

I=1
BI�rI (114)

where

T ≡

⎡
⎢⎢⎢⎣

J−1 0 0

0 J−1 0

0 0 J−1

⎤
⎥⎥⎥⎦

9×9

(115)

and

J−1 =
[

��i

� nxj

]
3×3

(116)

Then the local strain vector is calculated by using the gradient of incremental displacement
with respect to the position vector in (114) as

�(�z) =
[

��zi

� n+1xj

]
9×1

=
IP∑

I=1
LBI�rI (117)
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where

L ≡

⎡
⎢⎢⎢⎣

F−1 0 0

0 F−1 0

0 0 F−1

⎤
⎥⎥⎥⎦ (118)

and

F−1 =
[

� nxi

� n+1xj

]
3×3

(119)

Discretization of the linearized variational form a∗(n+1zk; �zk+1, z) in (57) becomes

NP∑
p=1

∫
R

{
IP∑

I=1

IP∑
J=1

rT
I BT

I LTCeffLBJ �rJ

}
J1|J | d�Ap ≡ r̂TKs�r̂ (120)

where r̂ and �̂r denote the global displacement and rotation vectors, Ks is the global stiff-
ness matrix, Ap is the area of a meshfree particle representative domain, � is the parametric
coordinate in thickness direction, and

[Ceff ]9×9 = Ceff
ijkl ≡ C

alg
ijkl + 
kl�

g
ij − 
kj�il (121)

as shown in (92). In (120), J1 represents the Jacobian between configuration at time tn and tn+1
and |J | represents the Jacobian between the parametric coordinate and physical coordinate at
time tn. The right side of (57) can be defined as the residual force vectors, which are discretized
as

ẑTF ext =
NP∑
p=1

∫
R

zTf BJ1|J | d�Ap (122)

for �(z) and

r̂TF int =
NP∑
p=1

∫
R

IP∑
I=1

rT
I BT

I LT�J1|J | d�Ap (123)

for a(n+1zk, z). Thus, the discretized global matrix equation is, from (120), (122), and (123),

r̂TKS�r̂ = ẑTF ext − r̂TF int (124)

Since the space of kinematically admissible displacement cannot be chosen easily from the
generalized displacement, the variation of the generalized displacement and rotation should
be transformed to the variation of the physical displacement and rotation. From (108), the
displacement at the neutral surface is

�zJ = �z(�J , �J ) =
IP∑

I=1
�I (�J , �J )�dI (125)
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Equation (125) can be extended to include the generalized rotation as⎡
⎢⎢⎣

�zJ

�z4J

�z5J

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

�z(�J , �J )

�z4(�J , �J )

�z5(�J , �J )

⎤
⎥⎥⎦ =

IP∑
I=1

�I (�J , �J )�rI ≡
IP∑

I=1
AIJ �rI (126)

where �z4 and �z5 are the physical rotational increments. Thus, the relation between the
physical and the generalized displacement and rotation can be obtained as

ẑ = ATr̂ (127)

where A is the transformation matrix. By using the relation in (127), the variation of the
generalized displacement in (124) is transformed to the variation of the physical displacement
as

ẑTA−1KS�r̂ = ẑTF ext − ẑTA−1F int (128)

Thus, the final governing matrix equation is

A−1KS�r̂ = F ext − A−1F int (129)

which can be solved for the solution.

5.4. Meshfree discretization of design sensitivity equation

To numerically compute the design sensitivity coefficient, the design sensitivity equation in
(94) is discretized following the same procedure as the response analysis. For this purpose, it
is necessary to discretized a′

V (n+1z, z) and �′
V (z) consistently with the method presented in

Section 5.3.
In the solid structure, meshfree shape function �I is constructed on physical domain �,

whose shape is a design variable. Thus, �I is a function of the design variable. However, in
the shell structure, the �I is independent of the design because it is calculated on a parametric
domain �r and the design dependence is established through the Jacobian matrix between
parametric coordinate and physical coordinate. Even though �I is independent of the design,
the displacement approximation in (108) has explicitly dependent terms on the design through
unit vectors lI and mI . The explicit dependence (implicit dependence is taken care by the term
on the left of (94)) can be represented as

�zfic =
IP∑

I=1
�I (�, �)

tI

2
�[l̇I , −ṁI ]

[
��I

��I

]
(130)

Then, �V (�z) in (87) can be discretized by using (130) as

�V (�z) =
IP∑

I=1
LT V G1

I�rI +
IP∑

I=1
LT G1

V I�rI +
IP∑

I=1
LT V G2

I�rI +
IP∑

I=1
LT G2

V I�rI

≡
IP∑

I=1
LBV

I �rI (131)
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where

G1
V I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 1
2�I tI l̇I1 − 1

2�I tI ṁI1

0 0 0 0 0

0 0 0 0 0

0 0 0 1
2�I tI l̇I2 − 1

2�I tI ṁI2

0 0 0 0 0

0 0 0 0 0

0 0 0 1
2�I tI l̇I3 − 1

2�I tI ṁI3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(132)

G2
V I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
2�sc

I,�tI l̇I1 − 1
2�sc

I,�tI ṁI1

0 0 0 1
2�sc

I,�tI l̇I1 − 1
2�sc

I,�tI ṁI1

0 0 0 0 0

0 0 0 1
2�sc

I,�tI l̇I2 − 1
2�sc

I,�tI ṁI2

0 0 0 1
2�sc

I,�tI l̇I2 − 1
2�sc

I,�tI ṁI2

0 0 0 0 0

0 0 0 1
2�sc

I,�tI l̇I3 − 1
2�sc

I,�tI ṁI3

0 0 0 1
2�sc

I,�tI l̇I3 − 1
2�sc

I,�tI ṁI3

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(133)

TV =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

J−1
0

�V

�x
0 0

0 J−1
0

�V

�x
0

0 0 J−1
0

�V

�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(134)

Copyright � 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 68:231–266



256 K. YI ET AL.

and �SC
I,j is calculated by the smoothed conforming nodal integration as in (106). The global

structural fictitious load form, a′
V (n+1z, z), in (93) can be discretized as

r̂TF fic
S

=
NP∑
p=1

∫
R

{
IP∑

I=1

IP∑
J=1

rT
I [BT

I LTCeffLTBV
J ]�rJ

}
J1|J0| d�Ap

+
NP∑
p=1

∫
R

{
IP∑

I=1
rT

I [BV T

I LT n+1�g + BT
I LT n+1�fic_g + BT

I LT n+1�g div nV ]
}

×J1|J0| d�Ap (135)

where n+1�g is the stress at current configuration. The external fictitious load form, �′
V (z), in

(66) can be discretized as

ẑTF fic
� =

NP∑
p=1

∫
R

zTf B div nV J1|J0| d�Ap (136)

Then the global design sensitivity equation is

r̂TKS� ˙̂r = ẑTF fic
� − r̂TF fic

S (137)

Pre-multiplying A−1 to (137) as in the response analysis in (128), yields the discretized
sensitivity equation as

ẑTA−1KS� ˙̂r = ẑTF fic
� − ẑTA−1F fic

S (138)

Therefore, the final equation is

A−1KS� ˙̂r = F fic
� − A−1F fic

S (139)

The left side of (139) is same form as in (129). Thus, the same stiffness matrix that is already
decomposed is used to solve sensitivity equation. This makes the design sensitivity calculation
very efficient.

6. NUMERICAL EXAMPLES

In order to demonstrate accuracy and efficiency of the proposed continuum-based DSA method
of nonlinear shell structure and its application to design optimization, two example problems
are provided in this section.
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Figure 4. Pinched hemisphere: (a) meshfree discretization; and (b) displacement.

Figure 5. Load–displacement curve of the pinched hemisphere.

6.1. DSA of pinched hemisphere

A pinched hemispherical shell with an 18◦ hole at the top, under two inward and two outward
forces 90◦ apart, as shown in Figure 4, is a frequent example for discussing shell structures
[26, 27]. Because of symmetry conditions, only one quadrant is modelled.

The material properties of this problem are Young’s modulus, E = 6.825 × 107, Poisson’s
ratio � = 0.3, radius R = 10, and thickness t = 0.04. The yield stress is �Y = 2.43 × 105 and
the hardening slope is H = 3.0 × 105. A total of 289 meshfree particles are distributed in the
quadrant of the structure, which corresponds to 1445 degrees-of-freedom. Fourteen time steps
have been used to complete the nonlinear analysis. Seven integration points are used through
the thickness direction. It took 5720 s for response on J-class HP workstation. Figure 5 shows
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Figure 6. Design velocity fields: (a) u1; and (b) u2.

Table I. Accuracy of design sensitivity results.

Design variable Performance measure �
 
′ × �� (�
/
′��) × 100

u1 Z1 3.8048E − 3 3.8058E − 3 99.97
Z17 −7.5058E − 3 −7.5033E − 3 100.03
Z96 5.2653E − 4 5.2648E − 4 100.01
Z164 4.3113E − 4 4.3072E − 4 100.10
Z175 −6.5461E − 5 −6.5408E − 5 100.08
Z199 3.4780E − 4 3.4844E − 4 99.82

u2 Z1 −1.3431E − 3 −1.3427E − 3 100.03
Z17 1.6425E − 3 1.6426E − 3 100.00
Z96 2.9782E − 4 2.9778E − 4 100.01
Z164 −4.7477E − 5 −4.7482E − 5 99.99
Z175 5.0661E − 5 5.0696E − 5 99.93
Z199 −1.5235E − 5 −1.5336E − 5 99.34

load–displacement curve at two points where forces are applied. As it can be seen from the
figure, nonlinear behaviour is well captured.

DSA is carried out using the design velocity fields shown in Figure 6 indicated by arrows.
The computational cost of DSA per design parameter is 177 s, which is about 3.1% of the
response analysis cost, which is very efficient compared to the FDM.

The design sensitivity results are shown in Table I. The first column denotes the design
variable ID; the second column denotes the performance measure, which is the vertical dis-
placement; the third column denotes is the finite difference result �
 with perturbation size
�� = 10−2, the fourth column denotes first-order approximation 
′ × �� using the proposed sen-
sitivity results, and the last column compares the results between the third and fourth columns.
Very accurate sensitivity results are obtained, as shown is Table I.
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Figure 7. Meshfree discretization of a spherical shell structure.

Table II. Material properties.

Properties Value

Young’s modulus, E 70 GPa
Poisson’s ratio, � 0.35135
Yielding strength, �Y 241 MPa
Hardening slope, H 241 MPa

6.2. Optimization of a spherical shell structure

In this section, a spherical shell structure is used in order to demonstrate use of the proposed
design sensitivity method for design optimization. The shell structure illustrated in Figure 7 is
modelled using a single spline surface obtained using the MSC/PATRAN geometric modeller.
Three translational degrees-of-freedom are fixed along the edge of the structure, and a vertical
load of 2000 N is applied at the centre. A total of 289 meshfree particles are distributed on the
surface, which corresponds to 1445 degrees-of-freedom. Table II shows the material properties
of the structure. A constant thickness t = 1 mm is used.

Meshfree nonlinear analysis is carried out using the incremental procedure. The size of
the dilation parameter is determined such that every point covers five particle points in each
spatial direction. Domain integration is carried out at each particle point using the stabilized-
conforming (SC) nodal integration method. As with the linear shell formulation, the direct
nodal integration is employed to remove the membrane and shear locking phenomena. Refer
to Reference [12] for the linear shell formulation. The values of the residual norm during the
typical Newton–Raphson iteration are shown in Table III. This result clearly exhibits a quadratic
convergence of meshfree analysis.

For meshfree analysis, the numerical integration must be carried out through the thickness
direction. In this example, the seven-point Gauss integration method is employed through the
thickness direction. Figure 8 shows the von Mises stresses result from meshfree analysis. Due
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Table III. Residual norm of the elastoplastic analysis.

Iteration Residual norm

1 6.50061E + 02
2 7.41409E + 01
3 1.82775E − 01
4 4.26552E − 07

Figure 8. von Mises stresses of the spherical shell structure: (a) top; and (b) bottom.

to the concentrated load, large stress appears at the centre of the structure. Figure 8(a) shows
the von Mises stresses at the first integration point, which is close to the top surface; while
Figure 8(b) shows the stresses at the last integration point, which is close to the bottom surfaces.
Due to the bending contribution, stresses of the shell structure have different values at the top
and bottom surfaces.

The shape and configuration DSA is carried out by using six design parameters, which are
illustrated in Figure 9. The first design parameter is x component of the tangent vector p� in
� direction at four corner points as shown in Figure 9(a). Similarly, the second and the third
design parameters are x, y, z component of the tangent vector p� in � direction at four corner
points. Using these design parameters, the corresponding design velocity field is calculated in
the parametric space.

The accuracy of the proposed DSA is compared with the FDM in Table IV. The first column
denotes the design variable ids; the second column denotes various performance measures such
as volume, vertical displacement, stress, von Mises stress, and effective plastic strain (the
superscript ‘u’ and ‘b’ are used to denote measures at top and bottom surface, respectively);
the third column denotes the performance values at the initial design; the fourth column
denotes the perturbed results from FDM; the fifth column denotes the prediction from the
calculated sensitivity results; and the last column compares the results between the fourth and
fifth columns. Very accurate sensitivity results are obtained, as shown throughout Table IV.
A small perturbation of � = 10−3 is used for FDM.
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Figure 9. Design parameterization of the spherical shell structure:
(a) u1; (b) u2; (c) u3; (d) u4; (e) u5; and (f) u6.

The design optimization problem is formulated as in (140) where the values in the parenthesis
are the performance values at the initial design.

min Volume

s.t. �u
vM145(113.05) � 113.05 MPa

e
pb

145(1.47 × 10−2) � 1.00 × 10−4

(140)

The volume of the spherical shell structure is to be minimized with constraints on the effective
plastic strain and von Mises stress at the point where the concentrated force is applied because
the point has maximum deformation and thus maximum stress. The initial design is infeasible
since one constraint is violated. Figure 10 shows the history of the cost and constraint functions.
As shown in Figure 10, the most volume reduction is achieved in first three iterations even
though the initial design was an infeasible one. The optimum solution is obtained after 10
iterations and all the constraints are satisfied. The constraint violations are adjusted during the
last three iterations. The cost function, which is the volume of the structure, is reduced up to
29.1% of the initial design. The von Mises stress is decreased up to 58.5% of the initial design
and the effective plastic strain is decreased significantly to become almost zero as shown in
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Table IV. Accuracy of the sensitivity analysis results.

Design Performance
variable measure 
 �
 
′ ×�� (�
/
′ ×��) × 100

1 Volume 1.05682E − 03 3.39312E − 10 3.39312E − 10 100.00
Z23 −4.83115E − 05 −2.21692E − 10 −2.21690E − 10 100.00

�u
1154 3.62922E + 06 −7.78925E + 00 −7.78937E + 00 100.00

�u
vM145 1.13045E + 08 2.63158E + 01 2.63149E + 01 100.00
Z175 3.21838E − 04 5.19739E − 10 5.19742E − 10 100.00

�b
22199 5.13991E + 06 8.55478E + 00 8.55491E + 00 100.00

e
pb

145 1.47175E − 02 3.68249E − 10 3.68238E − 10 100.00

3 Volume 1.05682E − 03 7.92338E − 11 7.92332E − 11 100.00
Z23 −4.83115E − 05 2.78742E − 10 2.78741E − 10 100.00

�u
1154 3.62922E + 06 3.59937E + 00 3.59930E + 00 100.00

�u
vM145 1.13045E + 08 2.59240E + 01 2.59246E + 01 100.00
Z175 3.21838E − 04 1.76443E − 09 1.76444E − 09 100.00

�b
22199 5.13991E + 06 1.20911E + 01 1.20910E + 01 100.00

e
pb

145 1.47175E − 02 −8.32310E − 08 −8.32313E − 08 100.00

4 Volume 1.05682E − 03 −3.72615E − 12 −3.72655E − 12 99.99
Z23 −4.83115E − 05 3.13598E − 10 3.13600E − 10 100.00

�u
1154 3.62922E + 06 2.15412E + 00 2.15393E + 00 100.01

�u
vM145 1.13045E + 08 2.60905E + 01 2.60906E + 01 100.00
Z175 3.21838E − 04 −2.46418E − 10 −2.46408E − 10 100.00

�b
22199 5.13991E + 06 −4.41299E + 00 −4.41287E + 00 100.00

e
pb

145 1.47175E − 02 1.89659E − 09 1.89659E − 09 100.00

6 Volume 1.05682E − 03 7.92338E − 11 7.92332E − 11 100.00
Z23 −4.83115E − 05 8.31410E − 10 8.31424E − 10 100.00

�u
1154 3.62922E + 06 −1.44313E + 00 −1.44300E + 00 100.01

�u
vM145 1.13045E + 08 2.59233E + 01 2.59245E + 01 100.00
Z175 3.21838E − 04 −2.87507E − 09 −2.87509E − 09 100.00

�b
22199 5.13991E + 06 −5.75857E + 01 −5.75861E + 01 100.00

e
pb

145 1.47175E − 02 −8.32310E − 08 −8.32313E − 08 100.00

Figure 10. Figure 11 shows the design parameter history. Since the shape design parameters
are set to zero at the initial design, all the design parameters start from the origin of the graph
shown in Figure 11.

The optimum shape is obtained with decreased radius R as shown in Figure 12. Therefore,
some amount of the bending deformation in the initial design is turned into membrane defor-
mation in optimized design. Figure 13 shows the von Mises stress results of the optimized
design. Compared with the results of the initial design, it can be noticed that the stresses are
significantly decreased despite the reduced volume.
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Figure 10. Optimization history of spherical shell structure.

Figure 11. Design parameter history of spherical shell structure.

Figure 12. Optimum design of spherical shell structure.
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Figure 13. von Mises stresses of the optimized spherical shell structure: (a) top; and (b) bottom.

7. CONCLUSION

A continuum-based DSA method for the finite deformation elastoplastic shell structure has been
proposed. Shell elastoplasticity is considered by performing return mapping on the subspace
defined by the plane stress condition. The Hughes–Winget objective integration algorithm is
used to handle the finite deformation nonlinear analysis because this integration algorithm
provides the consistent tangent stiffness matrix. The meshfree method is used to alleviate the
mesh-distortion problems that arise if we use FEM for the finite deformation nonlinear analysis
and shape design perturbation during optimization. Since no element information is generated
in the meshfree method, the CAD geometry is used to construct curved shell structure. Since
the proposed DSA uses the same consistent tangent stiffness as analysis at the converged
configuration of each time step, no iteration is required to solve the sensitivity equation.
Consequently, DSA takes much less effort than nonlinear response analysis. The accuracy and
efficiency of sensitivity information is compared with finite difference results with excellent
agreement. It is also demonstrated that optimization can be performed efficiently due to accuracy
of the design sensitivity of the continuum-based DSA method.

NOMENCLATURE

a(n+1z, z) structural variational form
a∗(n+1zk; �zk+1, z) linearized structural variational form
a′
V (n+1z, z) structural fictitious load form

C(�; � − �I ) correction function
D elastic constitutive matrix after enforcing zero normal stress condition
ep effective plastic strain
f yield function
F deformation gradient matrix
G surface geometric matrix
H hardening parameter
J Jacobian matrix between the physical and parametric coordinate
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J1 Jacobian between configuration tn and tn+1
l, m surface tangent vectors
�(z) external load form
�′
V (z) external fictitious load form

n surface normal vector
P mapping matrix modified from P in order to account for the factor of

two in the shear strain component
P mapping matrix between Cauchy stress and deviatoric Cauchy stress
n+1Q global-to-local transformation matrix at configuration tn+1
s deviatoric Cauchy stress vector of dimension 5
nV design velocity field at time tn
z displacement field
z virtual displacement
Z space of kinematically admissible virtual displacement

Greek letters

� back stress
�′ deviatoric back stress
�z incremental displacement vector
� local strain vector of dimension 5
�g global strain vector of dimension 9
�l local strain vector of dimension 9
�(ep) radius of the yield surface
� local Cauchy stress vector of dimension 5
�g global Cauchy stress vector of dimension 9
�l local Cauchy stress vector of dimension 9
	a(� − �I ) kernel function
�I meshfree shape function at particle I
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