23 research outputs found

    Relationships between Volcano Distribution, Crustal Structure, and P-wave Tomography: An Example from the Abu Monogenetic Volcano Group, SW Japan

    No full text
    Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan, and compare these distributions to fault and seismic data in the brittle crust, and P-wave tomography of the crust and upper mantle. Essential characteristics of the volcano distribution are extracted by a nonparametric kernel method using an algorithm to estimate anisotropic bandwidth. Overall, E-W elongate smooth modes in spatial density are identified that are consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. While the number of basalt eruptions decreased after 0.2 Ma, andesite eruptions increased and overall volume eruption rate is approximately steady-state. Estimated basalt supply to the lower crust is also constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir since 0.46 Ma

    Integrated Geophysical and Hydrothermal Models of Flank Degassing and Fluid Flow at Masaya Volcano, Nicaragua

    No full text
    We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (∌250 m), relatively impermeable normal faults dipping at ∌60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3–4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 × 10−5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity

    How Many Explosive Eruptions are Missing from the Geologic Record? Analysis of the Quaternary Record of Large Magnitude Explosive Eruptions in Japan

    Get PDF
    Large magnitude explosive eruptions in Japan were compiled for the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database. Here we use this dataset to investigate the under-recording of Japanese explosive eruptions. We identify under-recording of Volcanic Explosivity Index (VEI) 4–5 eruptions on two timescales. Model fitting and Akaike’s information criterion (AIC and AICc) model selection suggest that these trends can be represented with the double exponential decay model, reflecting geologic processes. The time series of the recording rate of larger eruptions (VEI 6 and 7) show a slowly decreasing trend in comparison to smaller eruptions. These time series can be represented with the single exponential decay model. The percentages of missing eruptions are estimated from the fitted models. Our results show an inverse correlation between VEI and degree of under-reporting suggesting that even larger VEI eruptions are under-recorded in the Quaternary. For example, 89 % of VEI 4 events, 65–66 % of VEI 5 events, 46–49 % of VEI 6 events and 36–39 % of VEI 7 events are missing from the record at 100 ka, 200 ka, 300 ka, and 500 ka, respectively. Comparison of frequencies of Japanese and global eruptions suggests that under-recording of the global database is 7.9–8.7 times larger than in the Japanese dataset. Therefore, under-recording of events must be taken into account in estimating recurrence rates of explosive eruptions using the geologic record

    Scoria Cone Formation through a Violent Strombolian Eruption: Irao Volcano, SW Japan

    No full text
    Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of ParĂ­cutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10−1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4 ± 0.05 Ma

    Tectonic and Magmatic Controls on the Location of Post-Subduction Monogenetic Volcanoes in Baja California, Mexico, Revealed through Spatial Analysis of Eruptive Vents

    No full text
    Post-subduction (12.5 Ma to less than 1 Ma) monogenetic volcanism on the Baja California peninsula, Mexico, formed one of the densest intra-continental areas of eruptive vents on Earth. It includes about 900 vents within an area ∌700 km long (N–S) and 70 to 150 km wide (W–E). This study shows that post-subduction volcanic activity was distributed along this arc and that modes exist in the volcano distribution, indicating that productivity of the magma source region was not uniform along the length of the arc. Vent clustering, vent alignments, and cone elongations were measured within eight monogenetic volcanic fields located along the peninsula. Results indicate that on a regional scale, vent clustering varies from north to south with denser spatial clustering in the north on the order of 1.9 × 10−1 vents/km2 to less dense clustering in the south on the order of 7.8 × 10−2 vents/km2. San Quintin, San Carlos, Jaraguay, and Santa Clara are spatially distinct volcanic fields with higher eruptive vent densities suggesting the existence of individual melt columns that may have persisted over time. In contrast, the San Borja, Vizcaino, San Ignacio, and La Purisima vent fields show lower degrees of vent clustering and no obvious spatial gaps between fields, thus indicating an area of more distributed volcanism. Insight into the lithospheric stress field can be gained from vent alignments and vent elongation measurements. Within the fields located along the extinct, subduction-related volcanic arc, elongation patterns of cinder cones and fissure-fed spatter cones, vent clusters, and vent alignments trend NW–SE and N–S. Within the Santa Clara field, located more to the west within the forearc, elongation patterns of the same volcanic features trend NE–SW. These patterns suggest that magmatism was more focused in the forearc and in the northern part of Baja California than in its southern region. Within the extinct arc, magma ascent created volcano alignments and elongate cones parallel to NW–SE to N–S oriented tectonic structures. In the forearc, the existence of N–S and NE–SW oriented volcanic features indicates a rotation in the stress field orientation compared to the arc
    corecore