508 research outputs found

    Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    Full text link
    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 microns. The sensitivity of the detector to low energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear Instruments and Methods

    Exact Solution of Photon Equation in Stationary G\"{o}del-type and G\"{o}del Space-Times

    Get PDF
    In this work the photon equation (massless Duffin-Kemmer-Petiau equation) is written expilicitly for general type of stationary G\"{o}del space-times and is solved exactly for G\"{o}del-type and G\"{o}del space-times. Harmonic oscillator behaviour of the solutions is discussed and energy spectrum of photon is obtained.Comment: 9 pages,RevTeX, no figure, revised for publicatio

    Cross-linked amylose bio-plastic: A transgenic-based compostable plastic alternative

    Get PDF
    Bio-plastics and bio-materials are composed of natural or biomass derived polymers, offering solutions to solve immediate environmental issues. Polysaccharide-based bio-plastics represent important alternatives to conventional plastic because of their intrinsic biodegradable nature. Amylose-only (AO), an engineered barley starch with 99% amylose, was tested to produce cross-linked all-natural bioplastic using normal barley starch as a control. Glycerol was used as plasticizer and citrate cross-linking was used to improve the mechanical properties of cross-linked AO starch extrudates. Extrusion converted the control starch from A-type to Vh- and B-type crystals, showing a complete melting of the starch crystals in the raw starch granules. The cross-linked AO and control starch specimens displayed an additional wide-angle diffraction reflection. Phospholipids complexed with Vh-type single helices constituted an integrated part of the AO starch specimens. Gas permeability tests of selected starch-based prototypes demonstrated properties comparable to that of commercial Mater-Bi© plastic. The cross-linked AO prototypes had composting characteristics not different from the control, indicating that the modified starch behaves the same as normal starch. The data shows the feasibility of producing all-natural bioplastic using designer starch as raw material

    Indirect chiral magnetic exchange through Dzyaloshinskii–Moriya-enhanced RKKY interactions in manganese oxide chains on Ir(100)

    Get PDF
    Localized electron spins can couple magnetically via the Ruderman–Kittel–Kasuya–Yosida interaction even if their wave functions lack direct overlap. Theory predicts that spin–orbit scattering leads to a Dzyaloshinskii–Moriya type enhancement of this indirect exchange interaction, giving rise to chiral exchange terms. Here we present a combined spin-polarized scanning tunneling microscopy, angle-resolved photoemission, and density functional theory study of MnO_2 chains on Ir(100). Whereas we find antiferromagnetic Mn–Mn coupling along the chain, the inter-chain coupling across the non-magnetic Ir substrate turns out to be chiral with a 120° rotation between adjacent MnO_2 chains. Calculations reveal that the Dzyaloshinskii–Moriya interaction results in spin spirals with a periodicity in agreement with experiment. Our findings confirm the existence of indirect chiral magnetic exchange, potentially giving rise to exotic phenomena, such as chiral spin-liquid states in spin ice systems or the emergence of new quasiparticles

    Lorentz Invariant Superluminal Tunneling

    Get PDF
    It is shown that superluminal optical signalling is possible without violating Lorentz invariance and causality via tunneling through photonic band gaps in inhomogeneous dielectrics of a special kind.Comment: 10 pages revtex, no figure, more discussions added, submitted to Phys. Rev.

    On the quantum analogue of Galileo's leaning tower experiment

    Full text link
    The quantum analogue of Galileo's leaning tower experiment is revisited using wave packets evolving under the gravitational potential. We first calculate the position detection probabilities for particles projected upwards against gravity around the classical turning point and also around the point of initial projection, which exhibit mass dependence at both these points. We then compute the mean arrival time of freely falling particles using the quantum probability current, which also turns out to be mass dependent. The mass dependence of both the position detection probabilities and the mean arrival time vanish in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter.Comment: Latex, 12 pages, 1 figure, uses IOP style, clarifications and references adde

    Spin 1 fields in Riemann-Cartan space-times "via" Duffin-Kemmer-Petiau theory

    Get PDF
    We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.Comment: 8 pages, no figures, revtex. Dedicated to Professor Gerhard Wilhelm Bund on the occasion of his 70th birthday. To appear in Gen. Rel. Grav. Equations numbering corrected. References update

    Spin dependent observable effect for free particles using the arrival time distribution

    Full text link
    The mean arrival time of free particles is computed using the quantum probability current. This is uniquely determined in the non-relativistic limit of Dirac equation, although the Schroedinger probability current has an inherent non-uniqueness. Since the Dirac probability current involves a spin-dependent term, an arrival time distribution based on the probability current shows an observable spin-dependent effect, even for free particles. This arises essentially from relativistic quantum dynamics, but persists even in the non-relativistic regime.Comment: 5 Latex pages, 2.eps figures; discussions sharpened and references added; accepted for publication in Physical Review
    • …
    corecore