335 research outputs found

    Adenylate effects on protein phosphorylation in the interenvelope lumen of pea chloroplasts

    Get PDF
    A 64-kilodalton (kDa) protein, situated in the lumen between the inner and outer envelopes of pea (Pisum sativum L.) chloroplasts (Soll and Bennett 1988, Eur. J. Biochem., 175, 301–307) is shown to undergo reversible phosphorylation in isolated mixed envelope vesicles. It is the most conspicuously labelled protein after incubation of envelopes with 33 nmol·1-1 [-32P]ATP whereas incubation with 50 mol·1-1 [-32P]ATP labels most prominently two outer envelope proteins (86 and 23 kDa). Half-maximum velocity for phosphorylation of the 64-kDa protein occurs with 200 nmol·1-1 ATP, and around 40 mol·1-1 ATP for phosphorylation of the 86- and 23-kDa proteins, indicating the operation of two distinct kinases. GGuanosine-, uridine-, cytidine 5-triphosphate and AMP are poor inhibitors of the labelling of the 64-kDa protein with [-32P]ATP. On the other hand, ADP has a potent influence on the extent of labelling (half-maximal inhibition at 1–5 mol·1-1). The ADP-dependent appearance of 32P in ATP indicates that ADP acts by reversal of kinase activity and not as a competitive inhibitor. However, the most rapid loss of 32P from pre-labelled 64-kDa protein occurs when envelope vesicles are incubated with ATP t1/2=15 s at 20 molsd1-1 ATP). This induced turnover of phosphate appears to be responsible for the rapid phosphoryl turnover seen in situ

    Localization of a 64-kDa phosphoprotein in the lumen between the outer and inner envelopes of pea chloroplasts

    Get PDF
    The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [γ-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [γ-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110000 × g centrifugation

    A guanosine 5′-triphosphate-dependent protein kinase is localized in the outer envelope membrane of pea chloroplasts

    Get PDF
    A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP

    4-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results

    Full text link
    The cosmic microwave background radiation provides unique constraints on cosmological models. In this Letter we present a summary of the spatial properties of the cosmic microwave background radiation based on the full 4 years of COBE DMR observations, as detailed in a set of companion Letters. The anisotropy is consistent with a scale-invariant power law model and Gaussian statistics. With full use of the multi-frequency 4-year DMR data, including our estimate of the effects of Galactic emission, we find a power-law spectral index of n=1.2Âą0.3n=1.2\pm 0.3 and a quadrupole normalization Qrms−PS=15.3−2.8+3.8Q_{rms-PS}=15.3^{+3.8}_{-2.8} Îź\muK. For n=1n=1 the best-fit normalization is Qrms−PS∣n=1=18Âą1.6Q_{rms-PS}\vert_{n=1}=18\pm 1.6 Îź\muK. These values are consistent with both our previous 1-year and 2-year results. The results include use of the ℓ=2\ell=2 quadrupole term; exclusion of this term gives consistent results, but with larger uncertainties. The 4-year sky maps, presented in this Letter, portray an accurate overall visual impression of the anisotropy since the signal-to-noise ratio is ~2 per 10 degree sky map patch. The improved signal-to-noise ratio of the 4-year maps also allows for improvements in Galactic modeling and limits on non-Gaussian statistics.Comment: 11 pages plus 2 PostScript figures. Figures 2 and 4 are not included, but are available upon request to [email protected]. Submitted to The Astrophysical Journal (Letters

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin
    • …
    corecore