83 research outputs found

    Possible black universes in a brane world

    Full text link
    A black universe is a nonsingular black hole where, beyond the horizon, there is an expanding, asymptotically isotropic universe. Such spherically symmetric configurations have been recently found as solutions to the Einstein equations with phantom scalar fields (with negative kinetic energy) as sources of gravity. They have a Schwarzschild-like causal structure but a de Sitter infinity instead of a singularity. It is attempted to obtain similar configurations without phantoms, in the framework of an RS2 type brane world scenario, considering the modified Einstein equations that describe gravity on the brane. By building an explicit example, it is shown that black-universe solutions can be obtained there in the presence of a scalar field with positive kinetic energy and a nonzero potential.Comment: 8 pages, 5 figures, gc styl

    Renormalization group improved black hole space-time in large extra dimensions

    Full text link
    By taking into account a running of the gravitational coupling constant with an ultra violet fixed point, an improvement of classical black hole space-times in extra dimensions is studied. It is found that the thermodynamic properties in this framework allow for an effective description of the black hole evaporation process. Phenomenological consequences of this approach are discussed and the LHC discovery potential is estimated.Comment: 13 pages, 6 figure

    First Season QUIET Observations: Measurements of CMB Polarization Power Spectra at 43 GHz in the Multipole Range 25 <= ell <= 475

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43GHz and 95GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the CMB. QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, >10,000hours of data were collected, first with the 19-element 43GHz array (3458hours) and then with the 90-element 95GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ~1000deg^2. This paper reports initial results from the 43GHz receiver which has an array sensitivity to CMB fluctuations of 69uK sqrt(s). The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB and EB power spectra in the multipole range ell=25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3sigma significance, the E-mode spectrum is consistent with the LCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r=0.35+1.06-0.87. The combination of a new time-stream double-demodulation technique, Mizuguchi-Dragone optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r=0.1Comment: 19 pages, 14 figures, higher quality figures are available at http://quiet.uchicago.edu/results/index.html; Fixed a typo and corrected statistical error values used as a reference in Figure 14, showing our systematic uncertainties (unchanged) vs. multipole; Revision to ApJ accepted version, this paper should be cited as "QUIET Collaboration et al. (2011)

    The QUIET Instrument

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales (~ 1 degree). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 uK sqrt(s)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 uK sqrt(s) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range l= 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument

    Sub-millimeter Tests of the Gravitational Inverse-square Law

    Full text link
    Motivated by a variety of theories that predict new effects, we tested the gravitational 1/r^2 law at separations between 10.77 mm and 137 microns using two different 10-fold azimuthally symmetric torsion pendulums and rotating 10-fold symmetric attractors. Our work improves upon other experiments by up to a factor of about 100. We found no deviation from Newtonian physics at the 95% confidence level and interpret these results as constraints on extensions of the Standard Model that predict Yukawa or power-law forces. We set a constraint on the largest single extra dimension (assuming toroidal compactification and that one extra dimension is significantly larger than all the others) of R <= 160 microns, and on two equal-sized large extra dimensions of R <= 130 microns. Yukawa interactions with |alpha| >= 1 are ruled out at 95% confidence for lambda >= 197 microns. Extra-dimensions scenarios stabilized by radions are restricted to unification masses M >= 3.0 TeV/c^2, regardless of the number of large extra dimensions. We also provide new constraints on power-law potentials V(r)\propto r^{-k} with k between 2 and 5 and on the gamma_5 couplings of pseudoscalars with m <= 10 meV/c^2.Comment: 34 pages, 38 figure

    Neutron experiments to search for new spin-dependent interactions

    Full text link
    The consideration is presented of possible neutron experiments to search for new short-range spin-dependent forces. The spin-dependent nucleon-nucleon interaction between neutron and nuclei may cause different effects: phase shift of a neutron wave in neutron interferometers of different kind, in particular of the Lloyd mirror configuration, neutron spin rotation in the pseudo-magnetic field, and transverse deflection of polarized neutron beam by a slab of substance. Estimates of sensitivity of these experiments are performed.Comment: 10 p., 4 fig, Corrected Fig. 4, 1 Ref. adde

    Second Season QUIET Observations: Measurements of the CMB Polarization Power Spectrum at 95 GHz

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95GHz. The 43-GHz results have been published in QUIET Collaboration et al. (2011), and here we report the measurement of CMB polarization power spectra using the 95-GHz data. This data set comprises 5337 hours of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 uK sqrt(s). Four low-foreground fields were observed, covering a total of ~1000 square degrees with an effective angular resolution of 12.8', allowing for constraints on primordial gravitational waves and high-signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-Cl (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB and BB power spectra between l=25 and 975 and find that the EE spectrum is consistent with LCDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r=1.1+0.9-0.8 (r<2.8 at 95% C.L.) as derived by the ML pipeline, and r=1.2+0.9-0.8 (r<2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r=0.01, the lowest level yet reported in the literature.Comment: 10 pages, 6 figures, 3 tables, submitted to ApJ, This paper should be cited as "QUIET Collaboration (2012)." v2: updated to reflect published versio

    Misuse of "study drugs:" prevalence, consequences, and implications for policy

    Get PDF
    BACKGROUND: Non-medical/illegal use of prescription stimulants popularly have been referred to as "study drugs". This paper discusses the current prevalence and consequences of misuse of these drugs and implications of this information for drug policy. RESULTS: Study drugs are being misused annually by approximately 4% of older teens and emerging adults. Yet, there are numerous consequences of misuse of prescription stimulants including addiction, negative reactions to high dosages, and medical complications. Policy implications include continuing to limit access to study drugs, finding more safe prescription drug alternatives, interdiction, and public education. CONCLUSION: Much more work is needed on prescription stimulant misuse assessment, identifying the extent of the social and economic costs of misuse, monitoring and reducing access, and developing prevention and cessation education efforts

    Associated Production of a KK-Graviton with a Higgs Boson via Gluon Fusion at the LHC

    Full text link
    In order to solve the hierarchy problem, several extra-dimensional models have received considerable attention. We have considered a process where a Higgs boson is produced in association with a KK-graviton (GKKG_{\rm KK}) at the LHC. At the leading order, this process occurs through gluon fusion mechanism gg→hGKKgg \to h G_{\rm KK} via a quark loop. We compute the cross section and examine some features of this process in the ADD model. We find that the quark in the loop does not decouple in the large quark-mass limit just as in the case of gg→hgg\to h process. We compute the cross section of this process for the case of the RS model also. We examine the feasibility of this process being observed at the LHC.Comment: 18 pages, 11 figures. Calculation in the Higgs effective theory framework adde
    • …
    corecore