12 research outputs found

    Involvement of the cysteine-rich head domain in activation and desensitization of the P2X1 receptor

    Get PDF
    P2X receptors (P2XRs) are ligand-gated ion channels activated by extracellular ATP. Although the crystal structure of the zebrafish P2X4R has been solved, the exact mode of ATP binding and the conformational changes governing channel opening and desensitization remain unknown. Here, we used voltage clamp fluorometry to investigate movements in the cysteine-rich head domain of the rat P2X1R (A118-I125) that projects over the proposed ATP binding site. On substitution with cysteine residues, six of these residues (N120-I125) were specifically labeled by tetramethyl-rhodamine-maleimide and showed significant changes in the emission of the fluorescence probe on application of the agonists ATP and benzoyl-benzoyl-ATP. Mutants N120C and G123C showed fast fluorescence decreases with similar kinetics as the current increases. In contrast, mutants P121C and I125C showed slow fluorescence increases that seemed to correlate with the current decline during desensitization. Mutant E122C showed a slow fluorescence increase and fast decrease with ATP and benzoyl-benzoyl-ATP, respectively. Application of the competitive antagonist 2′,3′-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) resulted in large fluorescence changes with the N120C, E122C, and G123C mutants and minor or no changes with the other mutants. Likewise, TNP-ATP-induced changes in control mutants distant from the proposed ATP binding site were comparably small or absent. Combined with molecular modeling studies, our data confirm the proposed ATP binding site and provide evidence that ATP orients in its binding site with the ribose moiety facing the solution. We also conclude that P2XR activation and desensitization involve movements of the cysteine-rich head domain

    Roles of extracellular nucleotides and P2 receptors in ectodomain shedding

    Get PDF
    Ectodomain shedding of integral membrane receptors results in the release of soluble molecules and modification of the transmembrane portions to mediate or modulate extracellular and intracellular signalling. Ectodomain shedding is stimulated by a variety of mechanisms, including the activation of P2 receptors by extracellular nucleotides. This review describes in detail the roles of extracellular nucleotides and P2 receptors in the shedding of various cell surface molecules, including amyloid precursor protein, CD23, CD62L, and members of the epidermal growth factor, immunoglobulin and tumour necrosis factor families. This review discusses the mechanisms involved in P2 receptor-mediated shedding, demonstrating central roles for the P2 receptors, P2X7 and P2Y2, and the sheddases, ADAM10 and ADAM17, in this process in a number of cell types

    Drug addiction

    No full text
    Drug addiction is a pervasive worldwide problem characterized by compulsive drug use that continues despite negative consequences and treatment attempts. Historically, the biological basis of drug addiction has focused principally on neuronal activity. However, despite their pivotal role in the underlying pathology of drug addiction, neurons are not the only central nervous system (CNS) component involved. The role of additional cell types, especially the CNS immunocompetent microglial cells, in the development of tolerance and related neuroplastic changes during drug taking, addiction, and withdrawal is also emerging. Within this perspective, this chapter reviews the roles of microglial cells in several aspects of drug addiction and its behavioural consequences, including reward, tolerance, dependence, and withdrawal. The cellular and molecular mechanisms which are particularly recruited will be emphasized. Lastly, we will also summarize the development of pharmacological modulators of microglial activation that offer novel treatment strategies and highlight the need to better understand the roles of microglia in the context of drug addiction.Xiaohui Wang, Thomas A. Cochran, Mark R. Hutchinson, Hang Yin, and Linda R. Watkin
    corecore