1,721 research outputs found
In Situ Thermal Inspection of Automated Fiber Placement Operations for Tow and Ply Defect Detection
The advent of Automated Fiber Placement (AFP) systems have aided the rapid manufacturing of composite aerospace structures. One of the challenges that AFP systems pose is the uniformity of the deposited prepreg tape layers, which complicates detection of laps, gaps, overlaps and twists. The current detection method used in industry involves halting fabrication and performing a time consuming, visual inspection of each tape layer. Typical AFP systems use a quartz lamp to heat the base layer to make the surface tacky as it deposits another tape layer. The innovation proposed in this paper is to use the preheated base layer as a through-transmission heat source for inspecting the newly added tape layer in situ using a thermographic camera mounted on to the AFP hardware. Such a system would not only increase manufacturing throughput by reducing inspection times, but it would also aid in process development for new structural designs or material systems by providing data on as-built parts. To this end, a small thermal camera was mounted onto an AFP robotic research platform at NASA, and thermal data was collected during typical and experimental layup operations. The data was post processed to reveal defects such as tow overlap/gap, wrinkling, and peel-up. Defects that would have been impossible to detect visually were also discovered in the data, such as poor/loss of adhesion between plies and the effects of vacuum debulking. This paper will cover the results of our experiments, and the plans for future versions of this inspection system
Early star formation traced by the highest redshift quasars
The iron abundance relative to alpha-elements in the circumnuclear region of
quasars is regarded as a clock of the star formation history and, more
specifically, of the enrichment by SNIa. We investigate the iron abundance in a
sample of 22 quasars in the redshift range 3.0<z<6.4 by measuring their rest
frame UV FeII bump, which is shifted into the near-IR, and by comparing it with
the MgII 2798 flux. The observations were performed with a device that can
obtain near-IR spectra in the range 0.8-2.4 um in one shot, thereby enabling an
optimal removal of the continuum underlying the FeII bump. We detect iron in
all quasars including the highest redshift (z=6.4) quasar currently known. The
uniform observational technique and the wide redshift range allows a reliable
study of the trend of the FeII/MgII ratio with redshift. We find the FeII/MgII
ratio is nearly constant at all redshifts, although there is marginal evidence
for a higher FeII/MgII ratio in the quasars at z~6. If the FeII/MgII ratio
reflects the Fe/alpha abundance, this result suggests that the z~6 quasars have
already undergone a major episode of iron enrichment. We discuss the possible
implications of this finding for the star formation history at z>6. We also
detect a population of weak iron emitters at z~4.5, which are possibly hosted
in systems that evolved more slowly. Alternatively, the trend of the FeII/MgII
ratio at high redshift may reflect significantly different physical conditions
of the circumnuclear gas in such high redshift quasars.Comment: Replaced to match the accepted version (ApJL in press), 5 page
Atomistic origins of the phase transition mechanism in Ge2Sb2Te5
Combined static and molecular dynamics first-principles calculations are used
to identify a direct structural link between the metastable crystalline and
amorphous phases of Ge2Sb2Te5. We find that the phase transition is driven by
the displacement of Ge atoms along the rocksalt [111] direction from the
stable-octahedron to high-energy-unstable tetrahedron sites close to the
intrinsic vacancy regions, which give rise to the formation of local 4-fold
coordinated motifs. Our analyses suggest that the high figures of merit of
Ge2Sb2Te5 are achieved from the optimal combination of intrinsic vacancies
provided by Sb2Te3 and the instability of the tetrahedron sites provided by
GeTe
Privacy Preserving Internet Browsers: Forensic Analysis of Browzar
With the advance of technology, Criminal Justice agencies are being
confronted with an increased need to investigate crimes perpetuated partially
or entirely over the Internet. These types of crime are known as cybercrimes.
In order to conceal illegal online activity, criminals often use private
browsing features or browsers designed to provide total browsing privacy. The
use of private browsing is a common challenge faced in for example child
exploitation investigations, which usually originate on the Internet. Although
private browsing features are not designed specifically for criminal activity,
they have become a valuable tool for criminals looking to conceal their online
activity. As such, Technological Crime units often focus their forensic
analysis on thoroughly examining the web history on a computer. Private
browsing features and browsers often require a more in-depth, post mortem
analysis. This often requires the use of multiple tools, as well as different
forensic approaches to uncover incriminating evidence. This evidence may be
required in a court of law, where analysts are often challenged both on their
findings and on the tools and approaches used to recover evidence. However,
there are very few research on evaluating of private browsing in terms of
privacy preserving as well as forensic acquisition and analysis of privacy
preserving internet browsers. Therefore in this chapter, we firstly review the
private mode of popular internet browsers. Next, we describe the forensic
acquisition and analysis of Browzar, a privacy preserving internet browser and
compare it with other popular internet browser
Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis
The thermal stability and decomposition products of formamidinium, a widely used organic cation in perovskite solar cell formulation, were investigated. The thermal degradation experiments of formamidinium-based perovskites and their halide precursors were carried out under helium atmosphere and vacuum at a constant heating rate of 20 degrees C min(-1). In addition, pulsed heating steps were employed under illumination/dark conditions to simulate a more realistic working temperature condition for photovoltaic devices. The identification of gas decomposition products was based on the quadrupole mass spectrometry technique. The released amounts of sym-triazine, formamidine, and hydrogen cyanide (HCN) were observed to highly depend on the temperature. For the experimental conditions used in this study, sym-triazine was obtained as the thermal product of degradation at temperatures above 95 degrees C. Below this temperature, only formamidine and HCN generation routes were observed. The energy pathways of formamidinium thermal degradation under photovoltaic working temperature conditions were further assessed by density functional theory calculations. The results indicated that formamidinium was more resilient to thermal degradation and the release of irreversible decomposition products compared to methylammonium because of a larger enthalpy and activation energy obtained for the decomposition reactions. The HCN instantaneous concentration observed during the low temperature heating tests and the estimations of the maximum release of HCN achievable per meter-square of an FA based perovskite based solar cell were compared to acute exposure guideline levels of airborne HCN concentration
Hiring Individuals in Addiction Recovery: Characteristics, Levels of Concern and Willingness
Research suggests employment is a key factor in an individual’s recovery and employer’s views have historically limited opportunities for highly marginalized groups. Objectives: This study provides an analysis of views among employers regarding the hiring of individuals in addiction recovery. Methods: A convenience sample of 382 employers affiliated with the chambers of commerce was recruited to participate in this study. The authors used descriptive and inferential statistical methods to analyze data received through an online questionnaire. Results: The results suggest gender influences the views of employers to hire individuals in recovery. Women are more likely to hire individuals in recovery than men. Additionally, levels of concern among employers vary across industries displaying a likelihood of employers to hire individuals in recovery dependent on the extent of needs. Conclusion: The findings help illuminate the employability of this unique population and also develop a better understanding of the characteristics of prospective employers who are willing to hire individuals in addiction recovery
ActionPoint: An App to Combat Cyberbullying by Strengthening Parent-Teen Relationships
Overview: Urgent need for intervention tools to mitigate increase in cyberbullying • ActionPoint is based on parent-teen relationship research • App includes interactive modules to improve family communication and online behavior to combat cyberbullying effects • To be presented in the IEEE World Forum on Public Safety Technology 2024
ActionPoint: An App to Combat Cyberbullying by Strengthening Parent-Teen Relationships
Due the increased prevalence of cyberbullying and the detrimental impact it can have on adolescents, there is a critical need for tools to help combat cyberbullying. This poster introduces the ActionPoint app, a mobile application based on empirical findings highlighting the importance of strong parent-teen relationships for reducing cyberbullying risk. The app is designed to help families build stronger communication skills, set healthy boundaries for social media use, identify instances of cyber- bullying and a teen’s cyberbullying risk, and, ultimately, decrease the negative outcomes of cyberbullying. The app guides parents and teens through a series of interactive modules that engage them in evidence-based activities that promote better understanding of cyberbullying risks and healthy online behaviors. In this poster, we describe the app design, the psychology research supporting the design of each module, the architecture and implementation details, and crucial paths to extend the app
Motility of small nematodes in disordered wet granular media
The motility of the worm nematode \textit{Caenorhabditis elegans} is
investigated in shallow, wet granular media as a function of particle size
dispersity and area density (). Surprisingly, we find that the nematode's
propulsion speed is enhanced by the presence of particles in a fluid and is
nearly independent of area density. The undulation speed, often used to
differentiate locomotion gaits, is significantly affected by the bulk material
properties of wet mono- and polydisperse granular media for .
This difference is characterized by a change in the nematode's waveform from
swimming to crawling in dense polydisperse media \textit{only}. This change
highlights the organism's adaptability to subtle differences in local structure
and response between monodisperse and polydisperse media
- …