417 research outputs found
Open mirror symmetry for Pfaffian Calabi-Yau 3-folds
We investigate the open mirror symmetry of certain non-complete intersection
Calabi- Yau 3-folds, so called pfaffian Calabi-Yau. We perform the prediction
of the number of disk invariants of several examples by using the direct
integration method proposed recently and the open mirror symmetry. We treat
several pfaffian Calabi-Yau 3-folds in and branes with two
discrete vacua. Some models have the two special points in its moduli space,
around both of which we can consider different A-model mirror partners. We
compute disc invariants for both cases. This study is the first application of
the open mirror symmetry to the compact non-complete intersections in toric
variety.Comment: 64 pages; v2: typos corrected, minor changes, references added; v3:
published version, minor corrections and improvement
Stability of flux compactifications and the pattern of supersymmetry breaking
We extend the KKLT approach to moduli stabilization by including the dilaton
and the complex structure moduli into the effective supergravity theory.
Decoupling of the dilaton is neither always possible nor necessary for the
existence of stable minima with zero (or positive) cosmological constant. The
pattern of supersymmetry breaking can be much richer than in the decoupling
scenario of KKLT.Comment: References adde
Large amplitude oscillatory motion along a solar filament
Large amplitude oscillations of solar filaments is a phenomenon known for
more than half a century. Recently, a new mode of oscillations, characterized
by periodical plasma motions along the filament axis, was discovered. We
analyze such an event, recorded on 23 January 2002 in Big Bear Solar
Observatory H filtergrams, in order to infer the triggering mechanism
and the nature of the restoring force. Motion along the filament axis of a
distinct buldge-like feature was traced, to quantify the kinematics of the
oscillatory motion. The data were fitted by a damped sine function, to estimate
the basic parameters of the oscillations. In order to identify the triggering
mechanism, morphological changes in the vicinity of the filament were analyzed.
The observed oscillations of the plasma along the filament was characterized by
an initial displacement of 24 Mm, initial velocity amplitude of 51 km/s, period
of 50 min, and damping time of 115 min. We interpret the trigger in terms of
poloidal magnetic flux injection by magnetic reconnection at one of the
filament legs. The restoring force is caused by the magnetic pressure gradient
along the filament axis. The period of oscillations, derived from the
linearized equation of motion (harmonic oscillator) can be expressed as
, where represents the Alfv\'en speed based on the
equilibrium poloidal field . Combination of our measurements with
some previous observations of the same kind of oscillations shows a good
agreement with the proposed interpretation.Comment: Astron. Astrophys., 2007, in pres
Five-Brane Superpotentials, Blow-Up Geometries and SU(3) Structure Manifolds
We investigate the dynamics of space-time filling five-branes wrapped on
curves in heterotic and orientifold Calabi-Yau compactifications. We first
study the leading N=1 scalar potential on the infinite deformation space of the
brane-curve around a supersymmetric configuration. The higher order potential
is also determined by a brane superpotential which we compute for a subset of
light deformations. We argue that these deformations map to new complex
structure deformations of a non-Calabi-Yau manifold which is obtained by
blowing up the brane-curve into a four-cycle and by replacing the brane by
background fluxes. This translates the original brane-bulk system into a
unifying geometrical formulation. Using this blow-up geometry we compute the
complete set of open-closed Picard-Fuchs differential equations and identify
the brane superpotential at special points in the field space for five-branes
in toric Calabi-Yau hypersurfaces. This has an interpretation in open mirror
symmetry and enables us to list compact disk instanton invariants. As a first
step towards promoting the blow-up geometry to a supersymmetric heterotic
background we propose a non-Kaehler SU(3) structure and an identification of
the three-form flux.Comment: 95 pages, 4 figures; v2: Minor corrections, references update
B-type defects in Landau-Ginzburg models
We consider Landau-Ginzburg models with possibly different superpotentials
glued together along one-dimensional defect lines. Defects preserving B-type
supersymmetry can be represented by matrix factorisations of the difference of
the superpotentials. The composition of these defects and their action on
B-type boundary conditions is described in this framework. The cases of
Landau-Ginzburg models with superpotential W=X^d and W=X^d+Z^2 are analysed in
detail, and the results are compared to the CFT treatment of defects in N=2
superconformal minimal models to which these Landau-Ginzburg models flow in the
IR.Comment: 50 pages, 2 figure
Optical monitoring of the z=4.40 quasar Q 2203+292
We report Cousins R-band monitoring of the high-redshift (z=4.40) radio quiet
quasar Q 2203+292 from May 1999 to October 2007. The quasar shows maximum
peak-to-peak light curve amplitude of ~0.3 mag during the time of our
monitoring, and ~0.9 mag when combined with older literature data. The rms of a
fit to the light curve with a constant is 0.08 mag and 0.2 mag, respectively.
The detected changes are at ~3-sigma level. The quasar was in a stable state
during the recent years and it might have undergone a brightening event in the
past. The structure function analysis concluded that the object shows
variability properties similar to those of the lower redshift quasars. We set a
lower limit to the Q 2203+292 broad line region mass of 0.3-0.4 M_odot.
Narrow-band imaging search for redshifted Ly_alpha from other emission line
objects at the same redshift shows no emission line objects in the quasar
vicinity.Comment: 9 pages, 8 figures, accepted for publication in MNRA
Type IIA orientifold compactification on SU(2)-structure manifolds
We investigate the effective theory of type IIA string theory on
six-dimensional orientifold backgrounds with SU(2)-structure. We focus on the
case of orientifolds with O6-planes, for which we compute the bosonic effective
action in the supergravity approximation. For a generic SU(2)-structure
background, we find that the low-energy effective theory is a gauged N=2
supergravity where moduli in both vector and hypermultiplets are charged. Since
all these supergravities descend from a corresponding N=4 background, their
scalar target space is always a quotient of a SU(1,1)/U(1) x
SO(6,n)/SO(6)xSO(n) coset, and is therefore also very constrained.Comment: 31 pages; v2: local report number adde
Constraints on LVS Compactifications of IIB String Theory
We argue that once all theoretical and phenomenological constraints are
imposed on the different versions of the Large Volume Scenario (LVS)
compactifications of type IIB string theory, one particular version is favored.
This is essentially a sequestered one in which the soft terms are generated by
Weyl anomaly and RG running effects. We also show that arguments questioning
sequestering in LVS models are not relevant in this case.Comment: 14 pages, additional discussion of D7 brane case and mSUGRA,
reference adde
The effective action of D6-branes in N=1 type IIA orientifolds
We use a Kaluza-Klein reduction to compute the low-energy effective action
for the massless modes of a spacetime-filling D6-brane wrapped on a special
Lagrangian 3-cycle of a type IIA Calabi-Yau orientifold. The modifications to
the characteristic data of the N=1 bulk orientifold theory in the presence of a
D6-brane are analysed by studying the underlying Type IIA supergravity coupled
to the brane worldvolume in the democratic formulation and performing a
detailed dualisation procedure. The N=1 chiral coordinates are found to be in
agreement with expectations from mirror symmetry. We work out the Kahler
potential for the chiral superfields as well as the gauge kinetic functions for
the bulk and the brane gauge multiplets including the kinetic mixing between
the two. The scalar potential resulting from the dualisation procedure can be
formally interpreted in terms of a superpotential. Finally, the gauging of the
Peccei-Quinn shift symmetries of the complex structure multiplets reproduces
the D-term potential enforcing the calibration condition for special Lagrangian
3-cycles.Comment: 48 pages, v2: typos corrected, references adde
- …