35 research outputs found

    Carbamoylated Erythropoietin-Induced Cerebral Blood Perfusion and Vascular Gene Regulation.

    Get PDF
    Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion

    High Temperature Performance of Concrete Confinement by MWCNT Modified Epoxy Based Fiber Reinforced Composites

    No full text
    The conventional method of fiber reinforced polymer (FRP) wrapping around concrete columns uses epoxy as the binder along with synthetic or natural fibers such as carbon, glass, basalt, jute, sisal etc. as the reinforcement. However, the thermal stability of epoxy is a major issue in application areas prone to fire exposure. The current work addressed this major drawback of epoxy by modifying it with a nanofiller, such as multiwalled carbon nanotubes (MWCNT), and reinforcing it using basalt and sisal fibers. The effect of exposure to elevated temperature on the behavior of concrete cylinders externally confined with these FRP systems was analyzed. Three types of specimens were considered: unconfined; confined with sisal fiber reinforced polymer (SFRP); and confined with hybrid sisal basalt fiber reinforced polymer (HSBFRP) specimens. The test samples were exposed to elevated temperature regimes of 100 °C, 200 °C, 300 °C and 400 °C for a period of 2 h. The compressive strengths of unconfined specimens were compared with various confined specimens, and from the test results, it was evident that the mechanical and thermal durability of the FRP systems was substantially enhanced by MWCNT incorporation. The reduction in the compressive strength of the FRP-confined specimens varied depending on the type of the confinement. After two hours of exposure at 400 °C, the compressive strength corresponding to the epoxy–HSBFRP-confined specimens were improved by 15%, whereas a 50% increase in strength corresponding to MWCNT-incorporated epoxy–HSBFRP-confined specimens was observed with respect to unconfined unexposed specimens. The MWCNT-modified epoxy-incorporated FRP-confined systems demonstrated superior performance even at elevated temperatures in comparison to unconfined specimens at ambient temperatures

    A cautionary note on the use of EESC-based regression analysis for ozone trend studies

    Get PDF
    International audienceEquivalent effective stratospheric chlorine (EESC) construct of ozone regression models attributes ozone changes to EESC changes using a single value of the sensitivity of ozone to EESC over the whole period. Using space-based total column ozone (TCO) measurements, and a synthetic TCO time series constructed such that EESC does not fall below its late 1990s maximum, we demonstrate that the EESC-based estimates of ozone changes in the polar regions (70–90°) after 2000 may, falsely, suggest an EESC-driven increase in ozone over this period. An EESC-based regression of our synthetic “failed Montreal Protocol with constant EESC” time series suggests a positive TCO trend that is statistically significantly different from zero over 2001–2012 when, in fact, no recovery has taken place. Our analysis demonstrates that caution needs to be exercised when using explanatory variables, with a single fit coefficient, fitted to the entire data record, to interpret changes in only part of the record

    Experimental and statistical investigation on synergistic effect of nano based epoxy hybrid FRP on strength and durability of circular concrete columns

    No full text
    Strengthening and retrofitting of concrete structures using fiber reinforced polymer (FRP) wrapping is a promising technique in construction sector. Epoxy is the commonly used matrix which possess a higher rate of degradation under exposure to harsh environment. The evaluation of strength and durability of concrete cylinders confined by multi walled carbon nanotube (MWCNT) incorporated epoxy with hybrid sisal and basalt fiber composite systems exposed to various environmental conditions forms focus of this paper. Specimens are subjected to various environmental exposure such as elevated temperature, acidic, alkaline and sea water conditions. Two varieties of epoxy viz. neat epoxy and MWCNT modified epoxy systems are considered. Mechanical and durability properties are analyzed based on axial compressive behavior, stress strain response, visual inspection and modes of failure. The MWCNT incorporated epoxy based hybrid FRP confined specimens exhibited a strength reduction less than 10% when compared with unexposed confined specimens under aggressive environmental conditions, while unconfined specimens showed strength reduction by 40% when compared to unexposed unconfined specimens. The MWCNT modified epoxy based hybrid confinement showed an energy absorption of 6.24 times that of unconfined specimens upon chemical exposure. Ultrasonic Pulse Velocity test revealed efficacy of confinement system in protecting concrete core from a sudden failure, which in turn increases the compressive strength of system. A statistical analysis using ANOVA was employed to find significance of these factors and confirmed with experimental results. The effect of MWCNT incorporation is significant in FRP confinement and shows the possibility of the FRP system to be adopted as a major retrofitting material in alkaline and sea water environments
    corecore