1,821 research outputs found

    3D mapping of young stars in the solar neighbourhood with Gaia DR2

    Full text link
    We study the three dimensional arrangement of young stars in the solar neighbourhood using the second release of the Gaia mission (Gaia DR2) and we provide a new, original view of the spatial configuration of the star forming regions within 500 pc from the Sun. By smoothing the star distribution through a gaussian filter, we construct three dimensional density maps for early-type stars (upper-main sequence, UMS) and pre-main sequence (PMS) sources. The PMS and the UMS samples are selected through a combination of photometric and astrometric criteria. A side product of the analysis is a three dimensional, G-band extinction map, which we use to correct our colour-magnitude diagram for extinction and reddening. Both density maps show three prominent structures, Scorpius-Centaurus, Orion, and Vela. The PMS map shows a plethora of lower mass star forming regions, such as Taurus, Perseus, Cepheus, Cassiopeia, and Lacerta, which are less visible in the UMS map, due to the lack of large numbers of bright, early-type stars. We report the finding of a candidate new open cluster towards l,b∼218.5∘,−2∘l, b \sim 218.5^{\circ}, -2^{\circ}, which could be related to the Orion star forming complex. We estimate ages for the PMS sample and we study the distribution of PMS stars as a function of their age. We find that younger stars cluster in dense, compact clumps, and are surrounded by older sources, whose distribution is instead more diffuse. The youngest groups that we find are mainly located in Scorpius-Centaurus, Orion, Vela, and Taurus. Cepheus, Cassiopeia, and Lacerta are instead more evolved and less numerous. Finally, we find that the three dimensional density maps show no evidence for the existence of the ring-like structure which is usually referred to as the Gould Belt.Comment: 17 pages, 17 figures, 6 appendixes; accepted for publication in A&A; image quality decreased to comply with the arXiv.org rules on file siz

    Exoplanet Transit Variability: Bow Shocks and Winds Around HD 189733b

    Full text link
    By analogy with the solar system, it is believed that stellar winds will form bow shocks around exoplanets. For hot Jupiters the bow shock will not form directly between the planet and the star, causing an asymmetric distribution of mass around the exoplanet and hence an asymmetric transit. As the planet orbits thorough varying wind conditions, the strength and geometry of its bow shock will change, thus producing transits of varying shape. We model this process using magnetic maps of HD 189733 taken one year apart, coupled with a 3D stellar wind model, to determine the local stellar wind conditions throughout the orbital path of the planet. We predict the time-varying geometry and density of the bow shock that forms around the magnetosphere of the planet and simulate transit light curves. Depending on the nature of the stellar magnetic field, and hence its wind, we find that both the transit duration and ingress time can vary when compared to optical light curves. We conclude that consecutive near-UV transit light curves may vary significantly and can therefore provide an insight into the structure and evolution of the stellar wind.Comment: 9 Pages, 7 figures. Accepted for publication in Monthly Notices of The Royal Astronomical Societ

    Graph-Embedding Empowered Entity Retrieval

    Full text link
    In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically that encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities

    Effect of left atrial and ventricular abnormalities on renal transplant recipient outcome—a single-center study

    Get PDF
    Background: Premature cardiovascular (CV) death is the commonest cause of death in renal transplant recipients. Abnormalities of left ventricular (LV) structure (collectively termed uremic cardiomyopathy) and left atrial (LA) dilation, a marker of fluid status and diastolic function, are risk factors for reduced survival in patients with end stage renal disease (ESRD). In the present analysis, we studied the impact of pre-transplant LA and LV abnormalities on survival after successful renal transplantation (RT).<p></p> Methods: One hundred nineteen renal transplant recipients (first transplant, deceased donors) underwent cardiovascular MRI (CMR) as part of CV screening prior to inclusion on the waiting list. Data regarding transplant function and patient survival after transplantation were collected.<p></p> Results: Median post-transplant follow-up was 4.3 years (interquartile range (IQR) 1.9, 6.2). During the post-transplant period, 13 patients returned to dialysis after graft failure and 23 patients died with a functioning graft. Survival analyses, censoring for patients returning to dialysis, showed that pre-transplant LV hypertrophy and elevated LA volume were significantly associated with reduced survival after transplantation. Multivariate Cox regression analyses demonstrated that longer waiting time, poorer transplant function, presence of LV hypertrophy and higher LA volume on screening CMR and female sex were independent predictors of death in patients with a functioning transplant.<p></p> Conclusions: Presence of LVH and higher LA volume are significant, independent predictors of death in patients who are wait-listed and proceed with renal transplantation.<p></p> METHODS: One hundred nineteen renal transplant recipients (first transplant, deceased donors) underwent cardiovascular MRI (CMR) as part of CV screening prior to inclusion on the waiting list. Data regarding transplant function and patient survival after transplantation were collected.<p></p> RESULTS: Median post-transplant follow-up was 4.3 years (interquartile range (IQR) 1.9, 6.2). During the post-transplant period, 13 patients returned to dialysis after graft failure and 23 patients died with a functioning graft. Survival analyses, censoring for patients returning to dialysis, showed that pre-transplant LV hypertrophy and elevated LA volume were significantly associated with reduced survival after transplantation. Multivariate Cox regression analyses demonstrated that longer waiting time, poorer transplant function, presence of LV hypertrophy and higher LA volume on screening CMR and female sex were independent predictors of death in patients with a functioning transplant.<p></p> CONCLUSIONS: Presence of LVH and higher LA volume are significant, independent predictors of death in patients who are wait-listed and proceed with renal transplantation

    Serum phosphate and social deprivation independently predict all-cause mortality in chronic kidney disease

    Get PDF
    Background: Hyperphosphataemia is linked to cardiovascular disease and mortality in chronic kidney disease (CKD). Outcome in CKD is also affected by socioeconomic status. The objective of this study was to assess the associations between serum phosphate, multiple deprivation and outcome in CKD patients. Methods: All adult patients currently not on renal replacement therapy (RRT), with first time attendance to the renal outpatient clinics in the Glasgow area between July 2010 and June 2014, were included in this prospective study. Area socioeconomic status was assessed as quintiles of the Scottish Index of Multiple Deprivation (SIMD). Outcomes were all-cause and cardiovascular mortality and commencement of RRT. Results: The cohort included 2950 patients with a median (interquartile range) age 67.6 (53.6–76.9) years. Median (interquartile range) eGFR was 38.1 (26.3–63.5) ml/min/1.73 m 2 , mean (±standard deviation) phosphate was 1.13 (±0.24) mmol/L and 31.6 % belonged to the most deprived quintile (SIMD quintile I). During follow-up 375 patients died and 98 commenced RRT. Phosphate ≥1.50 mmol/L was associated with all-cause (hazard ratio (HR) 2.51; 95 % confidence interval (CI) 1.63-3.89) and cardiovascular (HR 5.05; 95 % CI 1.90–13.46) mortality when compared to phosphate 0.90–1.09 mmol/L in multivariable analyses. SIMD quintile I was independently associated with all-cause mortality. Phosphate did not weaken the association between deprivation index and mortality, and there was no interaction between phosphate and SIMD quintiles. Neither phosphate nor SIMD predicted commencement of RRT. Conclusions Multiple deprivation and serum phosphate were strong, independent predictors of all-cause mortality in CKD and showed no interaction. Phosphate also predicted cardiovascular mortality. The results suggest that phosphate lowering should be pursued regardless of socioeconomic status

    Principal infinity-bundles - General theory

    Get PDF
    The theory of principal bundles makes sense in any infinity-topos, such as that of topological, of smooth, or of otherwise geometric infinity-groupoids/infinity-stacks, and more generally in slices of these. It provides a natural geometric model for structured higher nonabelian cohomology and controls general fiber bundles in terms of associated bundles. For suitable choices of structure infinity-group G these G-principal infinity-bundles reproduce the theories of ordinary principal bundles, of bundle gerbes/principal 2-bundles and of bundle 2-gerbes and generalize these to their further higher and equivariant analogs. The induced associated infinity-bundles subsume the notions of gerbes and higher gerbes in the literature. We discuss here this general theory of principal infinity-bundles, intimately related to the axioms of Giraud, Toen-Vezzosi, Rezk and Lurie that characterize infinity-toposes. We show a natural equivalence between principal infinity-bundles and intrinsic nonabelian cocycles, implying the classification of principal infinity-bundles by nonabelian sheaf hyper-cohomology. We observe that the theory of geometric fiber infinity-bundles associated to principal infinity-bundles subsumes a theory of infinity-gerbes and of twisted infinity-bundles, with twists deriving from local coefficient infinity-bundles, which we define, relate to extensions of principal infinity-bundles and show to be classified by a corresponding notion of twisted cohomology, identified with the cohomology of a corresponding slice infinity-topos. In a companion article [NSSb] we discuss explicit presentations of this theory in categories of simplicial (pre)sheaves by hyper-Cech cohomology and by simplicial weakly-principal bundles; and in [NSSc] we discuss various examples and applications of the theory.Comment: 46 pages, published versio

    X-Ray flares in Orion Young Stars. II. Flares, Magnetospheres, and Protoplanetary Disks

    Full text link
    We study the properties of powerful X-ray flares from 161 pre-main sequence (PMS) stars observed with the Chandra X-ray Observatory in the Orion Nebula region. Relationships between flare properties, protoplanetary disks and accretion are examined in detail to test models of star-disk interactions at the inner edge of the accretion disks. Previous studies had found no differences in flaring between diskfree and accreting systems other than a small overall diminution of X-ray luminosity in accreting systems. The most important finding is that X-ray coronal extents in fast-rotating diskfree stars can significantly exceed the Keplerian corotation radius, whereas X-ray loop sizes in disky and accreting systems do not exceed the corotation radius. This is consistent with models of star-disk magnetic interaction where the inner disk truncates and confines the PMS stellar magnetosphere. We also find two differences between flares in accreting and diskfree PMS stars. First, a subclass of super-hot flares with peak plasma temperatures exceeding 100 MK are preferentially present in accreting systems. Second, we tentatively find that accreting stars produce flares with shorter durations. Both results may be consequences of the distortion and destabilization of the stellar magnetosphere by the interacting disk. Finally, we find no evidence that any flare types, even slow-rise flat-top flares are produced in star-disk magnetic loops. All are consistent with enhanced solar long-duration events with both footprints anchored in the stellar surface.Comment: Accepted for publication in ApJ (07/17/08); 46 pages, 14 figures, 2 table
    • …
    corecore