36 research outputs found

    Deterministic diffusion fiber tracking improved by quantitative anisotropy

    Get PDF
    Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T 1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics. © 2013 Yeh et al

    High-resolution profiling of an 11 Mb segment of human chromosome 22 in sporadic schwannoma using array-CGH.

    No full text
    Previous low-resolution schwannoma studies have reported diverse frequencies (30-80%) of 22q deletions, involving the neurofibromatosis-2 tumor suppressor (NF2) gene. We constructed an array spanning 11 million base pairs of 22q encompassing the NF2 gene, with 100% coverage and an average resolution of 58 kb. Moreover, the 220 kb genomic sequence encompassing the NF2 gene was covered by 13 cosmids to further enhance the resolution of analysis. The rationale of this array-CGH study was to map and size 22q deletions around the NF2 gene in sporadic schwannoma using a reliable method with maximal resolution. We studied tumor and constitutional DNA from 47 patients and detected heterozygous deletions in 21 (45%) tumors, which could be classified into three profiles. The predominant profile (12/21) was a continuous deletion of the 11 Mb segment, consistent with monosomy 22. The second profile, comprising five schwannomas, was also in agreement with a continuous 11 Mb heterozygous deletion. However, these displayed a distinctly different level of deletion when compared to the first profile, suggesting a considerable amount of normal tissue in the tumor samples. This is the first report demonstrating the sensitivity of array-CGH to discriminate such samples. The third profile was composed of four cases displaying interstitial deletions of various sizes. Two of these did not encompass the NF2 locus, which further emphasize the importance of other loci in schwannoma development. This is the first high-resolution study performed on a large series of tumors, using an array continuously covering 1/3 of a human chromosome. Our findings warrant further studies of an extended tumor series on a full 22q genomic array, to better define additional, putative 22q-located loci important for schwannoma development. Our array also provides a new diagnostic tool for analysis of NF2 gene deletions in patients affected with neurofibromatosis-2

    High-resolution array-CGH profiling of germline and tumor-specific copy number alterations on chromosome 22 in patients affected with schwannomas

    No full text
    Schwannomas may develop sporadically or in association with NF2 and schwannomatosis. The fundamental aberration in schwannomas is the bi-allelic inactivation of the NF2 gene. However, clinical and molecular data suggest that these tumors share a common pathogenetic mechanism related to as yet undefined 22q-loci. Linkage studies in schwannomatosis, a condition related to NF2, have defined a candidate 22q-locus and excluded the NF2 gene as the causative germline mutation. Thus, analysis of aberrations in schwannomas may lead to the identification of putative gene(s) involved in the development of schwannoma/schwannomatosis. We profiled a series of 88 schwannomas and constitutional DNA using a tiling path chromosome 22 array. Array-CGH is a suitable method for high-resolution discrimination between germline and tumor-specific aberrations. Previously reported frequencies of 22q-associated deletions in schwannomas display large discrepancies, ranging from 30% to 80%. We detected heterozygous deletions in 53% of schwannomas and the predominant pattern was monosomy 22. In addition, three tumors displayed terminal deletions and four harbored overlapping interstitial deletions of various sizes encompassing the NF2 gene. When profiling constitutional DNA, we identified eight loci that were affected by copy number variation (CNV). Some of the identified CNVs may not be phenotypically neutral and the possible role of these CNVs in the pathogenesis of schwannomas should be studied further. We observed a correlation between the breakpoint position, present in tumor and/or constitutional DNA and the location of segmental duplications. This association implicates these unstable regions in rearrangements occurring both in meiosis and mitosis

    A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications.

    No full text
    We have constructed the first comprehensive microarray representing a human chromosome for analysis of DNA copy number variation. This chromosome 22 array covers 34.7 Mb, representing 1.1% of the genome, with an average resolution of 75 kb. To demonstrate the utility of the array, we have applied it to profile acral melanoma, dermatofibrosarcoma, DiGeorge syndrome and neurofibromatosis 2. We accurately diagnosed homozygous/heterozygous deletions, amplifications/gains, IGLV/IGLC locus instability, and breakpoints of an imbalanced translocation. We further identified the 14-3-3 eta isoform as a candidate tumor suppressor in glioblastoma. Two significant methodological advances in array construction were also developed and validated. These include a strictly sequence defined, repeat-free, and non-redundant strategy for array preparation. This approach allows an increase in array resolution and analysis of any locus; disregarding common repeats, genomic clone availability and sequence redundancy. In addition, we report that the application of phi29 DNA polymerase is advantageous in microarray preparation. A broad spectrum of issues in medical research and diagnostics can be approached using the array. This well annotated and gene-rich autosome contains numerous uncharacterized disease genes. It is therefore crucial to associate these genes to specific 22q-related conditions and this array will be instrumental towards this goal. Furthermore, comprehensive epigenetic profiling of 22q-located genes and high-resolution analysis of replication timing across the entire chromosome can be studied using our array
    corecore