120 research outputs found

    Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans

    Get PDF
    Background Physiologically based modelling using DEBtox (dynamic energy budget in toxicology) and transcriptional profiling were used in Caenorhabditis elegans to identify how physiological modes of action, as indicated by effects on system level resource allocation were associated with changes in gene expression following exposure to three toxic chemicals: cadmium, fluoranthene (FA) and atrazine (AZ). Results For Cd, the physiological mode of action as indicated by DEBtox model fitting was an effect on energy assimilation from food, suggesting that the transcriptional response to exposure should be dominated by changes in the expression of transcripts associated with energy metabolism and the mitochondria. While evidence for effect on genes associated with energy production were seen, an ontological analysis also indicated an effect of Cd exposure on DNA integrity and transcriptional activity. DEBtox modelling showed an effect of FA on costs for growth and reproduction (i.e. for production of new and differentiated biomass). The microarray analysis supported this effect, showing an effect of FA on protein integrity and turnover that would be expected to have consequences for rates of somatic growth. For AZ, the physiological mode of action predicted by DEBtox was increased cost for maintenance. The transcriptional analysis demonstrated that this increase resulted from effects on DNA integrity as indicated by changes in the expression of genes chromosomal repair. Conclusions Our results have established that outputs from process based models and transcriptomics analyses can help to link mechanisms of action of toxic chemicals with resulting demographic effects. Such complimentary analyses can assist in the categorisation of chemicals for risk assessment purposes

    VarLOCK - sequencing independent, rapid detection of SARS-CoV-2 variants of concern for point-of-care testing, qPCR pipelines and national wastewater surveillance

    Get PDF
    The COVID-19 pandemic continues to pose a threat to the general population. The ongoing vaccination programs provide protection to individuals and facilitate the opening of society and a return to normality. However, emergent and existing SARS-CoV-2 variants capable of evading the immune system endanger the efficacy of the vaccination strategy. To preserve the efficacy of SARS-CoV-2 vaccination globally, aggressive and effective surveillance for known and emerging SARS-CoV-2 Variants of Concern (VOC) is required. Rapid and specific molecular diagnostics can provide speed and coverage advantages compared to genomic sequencing alone, benefitting the public health response and facilitating VOC containment. In this work, we expand the recently developed SARS-CoV-2 CRISPR-Cas detection technology (SHERLOCK) to allow rapid and sensitive discrimination of VOCs, that can be used at point of care and/or implemented in the pipelines of small or large testing facilities, and even determine proportion of VOCs in pooled population-level wastewater samples. This technology aims to complement the ongoing sequencing efforts to allow facile and, crucially, rapid identification of individuals infected with VOCs to help break infection chains. Here, we show the optimisation of our VarLOCK assays (Variant-specific SHERLOCK) for multiple specific mutations in the S gene of SARS-CoV-2 and validation with samples from the Cardiff University Testing Service. We also show the applicability of VarLOCK to national wastewater surveillance of SARS-CoV-2 variants. In addition, we show the rapid adaptability of the technique for new and emerging VOCs such as Omicron

    GOBLET: The Global Organisation for Bioinformatics Learning, Education and Training

    Get PDF
    In recent years, high-throughput technologies have brought big data to the life sciences. The march of progress has been rapid, leaving in its wake a demand for courses in data analysis, data stewardship, computing fundamentals, etc., a need that universities have not yet been able to satisfy—paradoxically, many are actually closing “niche” bioinformatics courses at a time of critical need. The impact of this is being felt across continents, as many students and early-stage researchers are being left without appropriate skills to manage, analyse, and interpret their data with confidence. This situation has galvanised a group of scientists to address the problems on an international scale. For the first time, bioinformatics educators and trainers across the globe have come together to address common needs, rising above institutional and international boundaries to cooperate in sharing bioinformatics training expertise, experience, and resources, aiming to put ad hoc training practices on a more professional footing for the benefit of all

    Genetically programmed chiral organoborane synthesis

    Get PDF
    Recent advances in enzyme engineering and design have expanded nature’s catalytic repertoire to functions that are new to biology. However, only a subset of these engineered enzymes can function in living systems. Finding enzymatic pathways that form chemical bonds that are not found in biology is particularly difficult in the cellular environment, as this depends on the discovery not only of new enzyme activities, but also of reagents that are both sufficiently reactive for the desired transformation and stable in vivo. Here we report the discovery, evolution and generalization of a fully genetically encoded platform for producing chiral organoboranes in bacteria. Escherichia coli cells harbouring wild-type cytochrome c from Rhodothermus marinus8 (Rma cyt c) were found to form carbon–boron bonds in the presence of borane–Lewis base complexes, through carbene insertion into boron–hydrogen bonds. Directed evolution of Rma cyt c in the bacterial catalyst provided access to 16 novel chiral organoboranes. The catalyst is suitable for gram-scale biosynthesis, providing up to 15,300 turnovers, a turnover frequency of 6,100 h^(–1), a 99:1 enantiomeric ratio and 100% chemoselectivity. The enantiopreference of the biocatalyst could also be tuned to provide either enantiomer of the organoborane products. Evolved in the context of whole-cell catalysts, the proteins were more active in the whole-cell system than in purified forms. This study establishes a DNA-encoded and readily engineered bacterial platform for borylation; engineering can be accomplished at a pace that rivals the development of chemical synthetic methods, with the ability to achieve turnovers that are two orders of magnitude (over 400-fold) greater than those of known chiral catalysts for the same class of transformation. This tunable method for manipulating boron in cells could expand the scope of boron chemistry in living systems

    [Van Heuven] Goedhart, Gerrit Jan

    No full text
    corecore