423 research outputs found

    Diffraction catastrophes and semiclassical quantum mechanics for Veselago lensing in graphene

    Get PDF
    We study the effect of trigonal warping on the focussing of electrons by n-p junctions in graphene. We find that perfect focussing, which was predicted for massless Dirac fermions, is only preserved for one specific sample orientation. In the general case, trigonal warping leads to the formation of cusp caustics, with a different position of the focus for graphene's two valleys. We develop a semiclassical theory to compute these positions and find very good agreement with tight-binding simulations. Considering the transmission as a function of potential strength, we find that trigonal warping splits the single Dirac peak into two distinct peaks, leading to valley polarization. We obtain the transmission curves from tight-binding simulations and find that they are in very good agreement with the results of a billiard model that incorporates trigonal warping. Furthermore, the positions of the transmission maxima and the scaling of the peak width are accurately predicted by our semiclassical theory. Our semiclassical analysis can easily be carried over to other Dirac materials, which generally have different Fermi surface distortions.Comment: 6 pages, 4 figures, plus supplemental material. Important reference added and text update

    Modeling Klein tunneling and caustics of electron waves in graphene

    Get PDF
    We employ the tight-binding propagation method to study Klein tunneling and quantum interference in large graphene systems. With this efficient numerical scheme, we model the propagation of a wave packet through a potential barrier and determine the tunneling probability for different incidence angles. We consider both sharp and smooth potential barriers in n-p-n and n-n' junctions and find good agreement with analytical and semiclassical predictions. When we go outside the Dirac regime, we observe that sharp n-p junctions no longer show Klein tunneling because of intervalley scattering. However, this effect can be suppressed by considering a smooth potential. Klein tunneling holds for potentials changing on the scale much larger than the interatomic distance. When the energies of both the electrons and holes are above the Van Hove singularity, we observe total reflection for both sharp and smooth potential barriers. Furthermore, we consider caustic formation by a two-dimensional Gaussian potential. For sufficiently broad potentials we find a good agreement between the simulated wave density and the classical electron trajectories.Comment: 14 pages, 12 figure

    Electronic optics in graphene in the semiclassical approximation

    Get PDF
    We study above-barrier scattering of Dirac electrons by a smooth electrostatic potential combined with a coordinate-dependent mass in graphene. We assume that the potential and mass are sufficiently smooth, so that we can define a small dimensionless semiclassical parameter h≪1h \ll 1. This electronic optics setup naturally leads to focusing and the formation of caustics, which are singularities in the density of trajectories. We construct a semiclassical approximation for the wavefunction in all points, placing particular emphasis on the region near the caustic, where the maximum of the intensity lies. Because of the matrix character of the Dirac equation, this wavefunction contains a nontrivial semiclassical phase, which is absent for a scalar wave equation and which influences the focusing. We carefully discuss the three steps in our semiclassical approach: the adiabatic reduction of the matrix equation to an effective scalar equation, the construction of the wavefunction using the Maslov canonical operator and the application of the uniform approximation to the integral expression for the wavefunction in the vicinity of a caustic. We consider several numerical examples and show that our semiclassical results are in very good agreement with the results of tight-binding calculations. In particular, we show that the semiclassical phase can have a pronounced effect on the position of the focus and its intensity.Comment: 103 pages, 11 figure

    Semiclassical theory for plasmons in two-dimensional inhomogeneous media

    Full text link
    The progress in two-dimensional materials has led to rapid experimental developments in quantum plasmonics, where light is manipulated using plasmons. Although numerical methods can be used to quantitatively describe plasmons in spatially inhomogeneous systems, they are limited to relatively small setups. Here, we present a novel semi-analytical method to describe plasmons in two-dimensional inhomogeneous media within the framework of the Random Phase Approximation (RPA). Our approach is based on the semiclassical approximation, which is formally applicable when the length scale of the inhomogeneity is much larger than the plasmon wavelength. We obtain an effective classical Hamiltonian for quantum plasmons by first separating the in-plane and out-of-plane degrees of freedom and subsequently employing the semiclassical Ansatz for the electrostatic plasmon potential. We illustrate this general theory by considering scattering of plasmons by radially symmetric inhomogeneities. We derive a semiclassical expression for the differential scattering cross section and compute its numerical values for a specific model of the inhomogeneity.Comment: 27 pages, 9 figure

    Pinning and collective modes of a vortex lattice in a Bose-Einstein condensate

    Full text link
    We consider the ground state of vortices in a rotating Bose-Einstein condensate that is loaded in a corotating two-dimensional optical lattice. Due to the competition between vortex interactions and their potential energy, the vortices arrange themselves in various patterns, depending on the strength of the optical potential and the vortex density. We outline a method to determine the phase diagram for arbitrary vortex filling factor. Using this method, we discuss several filling factors explicitly. For increasing strength of the optical lattice, the system exhibits a transition from the unpinned hexagonal lattice to a lattice structure where all the vortices are pinned by the optical lattice. The geometry of this fully pinned vortex lattice depends on the filling factor and is either square or triangular. For some filling factors there is an intermediate half-pinned phase where only half of the vortices is pinned. We also consider the case of a two-component Bose-Einstein condensate, where the possible coexistence of the above-mentioned phases further enriches the phase diagram. In addition, we calculate the dispersion of the low-lying collective modes of the vortex lattice and find that, depending on the structure of the ground state, they can be gapped or gapless. Moreover, in the half-pinned and fully pinned phases, the collective mode dispersion is anisotropic. Possible experiments to probe the collective mode spectrum, and in particular the gap, are suggested.Comment: 29 pages, 4 figures, changes in section

    Optical investigation of thermoelectric topological crystalline insulator Pb0.77_{0.77}Sn0.23_{0.23}Se

    Full text link
    Pb0.77_{0.77}Sn0.23_{0.23}Se is a novel alloy of two promising thermoelectric materials PbSe and SnSe that exhibits a temperature dependent band inversion below 300 K. Recent work has shown that this band inversion also coincides with a trivial to nontrivial topological phase transition. To understand how the properties critical to thermoelectric efficiency are affected by the band inversion, we measured the broadband optical response of Pb0.77_{0.77}Sn0.23_{0.23}Se as a function of temperature. We find clear optical evidence of the band inversion at 160±15160\pm15 K, and use the extended Drude model to accurately determine a T3/2T^{3/2} dependence of the bulk carrier lifetime, associated with electron-acoustic phonon scattering. Due to the high bulk carrier doping level, no discriminating signatures of the topological surface states are found, although their presence cannot be excluded from our data.Comment: 11 pages, 6 figure

    Measurement of the temperature of an ultracold ion source using time-dependent electric fields

    Get PDF
    We report on a measurement of the characteristic temperature of an ultracold rubidium ion source, in which a cloud of laser-cooled atoms is converted to ions by photo-ionization. Extracted ion pulses are focused on a detector with a pulsed-field technique. The resulting experimental spot sizes are compared to particle-tracking simulations, from which a source temperature T=(1±2)T = (1 \pm 2) mK and the corresponding transversal reduced emittance ϵr=7.9X10−9\epsilon_r = 7.9 X 10^{-9} m rad eV\sqrt{\rm{eV}} are determined. We find that this result is likely limited by space charge forces even though the average number of ions per bunch is 0.022.Comment: 8 pages, 11 figure

    Chiral tunneling in single and bilayer graphene

    Get PDF
    We review chiral (Klein) tunneling in single-layer and bilayer graphene and present its semiclassical theory, including the Berry phase and the Maslov index. Peculiarities of the chiral tunneling are naturally explained in terms of classical phase space. In a one-dimensional geometry we reduced the original Dirac equation, describing the dynamics of charge carriers in the single layer graphene, to an effective Schr\"odinger equation with a complex potential. This allowed us to study tunneling in details and obtain analytic formulas. Our predictions are compared with numerical results. We have also demonstrated that, for the case of asymmetric n-p-n junction in single layer graphene, there is total transmission for normal incidence only, side resonances are suppressed.Comment: submitted to Proceedings of Nobel Symposium on graphene, May 201
    • …
    corecore