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We study the effect of trigonal warping on the focussing of electrons by n-p junctions in graphene.
We find that perfect focussing, which was predicted for massless Dirac fermions, is only preserved
for one specific sample orientation. In the general case, trigonal warping leads to the formation
of cusp caustics, with a different position of the focus for graphene’s two valleys. We develop a
semiclassical theory to compute these positions and find very good agreement with tight-binding
simulations. Considering the transmission as a function of potential strength, we find that trigonal
warping splits the single Dirac peak into two distinct peaks, leading to valley polarization. We
obtain the transmission curves from tight-binding simulations and find that they are in very good
agreement with the results of a billiard model that incorporates trigonal warping. Furthermore, the
positions of the transmission maxima and the scaling of the peak width are accurately predicted
by our semiclassical theory. Our semiclassical analysis can easily be carried over to other Dirac
materials, which generally have different Fermi surface distortions.

Veselago lenses [1] are special types of lenses, which
are made of materials with a negative refractive index.
Such lenses can overcome the diffraction limit [2] and
can nowadays be realized in metamaterials [3–5], chiral
metamaterials [6–9] and photonic crystals [10, 11]. An
electronic analog of a Veselago lens can be created us-
ing n-p junctions, with the classical trajectories of the
charge carriers playing the role of the rays in geometri-
cal optics. Such junctions focus electrons, because the
group velocity for holes is in the direction opposite to
their phase velocity, whereas the two velocities are in the
same direction for electrons. However, in conventional
semiconductors, such interfaces are unsuitable because
of their high reflectivity, owing to the presence of a de-
pletion region.

Cheianov et al. [12] realized that graphene does not
have this drawback. It has zero bandgap, as the valence
and conduction bands touch at two non-equivalent cor-
ners of the Brillouin zone, known as K and K ′. The low-
energy charge carriers are ballistic over large distances
and follow the Dirac equation [13–18]. This gives rise to
Klein tunneling: normally incident electrons are trans-
mitted with unit probability [19–27], which makes the
interface exceptionally transparent. Recently, Veselago
lensing in graphene was experimentally observed [27, 28].

Theoretical studies have used the Dirac equation to
investigate focussing by flat [12, 29] and circular [30–32]
junctions and in zigzag nanoribbons [33]. It was shown
that when the electron and hole charge carrier densities
are equal, a flat interface is able to focus all trajectories
into a single point [12]. According to catastrophe the-
ory [34–37], such a situation is exceptional: any pertur-
bation of the Hamiltonian will ruin this ideal focus. In-
deed, in tight-binding simulations of an n-p junction [38],
where transmission was studied as a function of potential
strength, a direction-dependent broadening of the trans-

mission peak was observed. However, the precise origin
of this broadening was not clarified.

An important correction to the Dirac Hamiltonian is
the second-order term in the expansion of graphene’s
tight-binding Hamiltonian, known as the trigonal warp-
ing term [18, 39, 40]. When adding this term, the Hamil-
tonian becomes dependent on the crystallographic direc-
tion of the sample and becomes different for the two val-
leys, leading to different classical trajectories. Using this
principle, a valley beam splitter based on an n-p-n’ junc-
tion was devised [41], in which the trajectories in the K-
and K ′-valleys are deflected in different angular direc-
tions. Creating valley polarization [42–44] is important
for graphene valleytronics applications, where the valley
index is used to encode information in a way similar to
spintronics.

In this paper, we develop a complete semiclassical the-
ory of Veselago lensing by an n-p junction in the pres-
ence of trigonal warping. We show that the ideal focus
generally disappears and analyze the different diffraction
catastrophes, known as caustics [34–37], that are formed.
We show that electrons from the K- and K ′-valleys are
generally focussed at different positions, even at moder-
ate energies. We obtain these positions using semiclas-
sical methods [29, 45, 46] based on the Pearcey func-
tion [47–49] and find very good agreement with tight-
binding simulations using the Kwant code [50]. We also
show that an initial sublattice polarization leads to tilt-
ing of the focus. Furthermore, we obtain the transmis-
sion as a function of the hole carrier density from both
tight-binding simulations [50] and a semiclassical billiard
model [51, 52] that incorporates trigonal warping. We
find that trigonal warping explains the previously ob-
served peak broadening [38] and that our semiclassical
theory accurately predicts the positions of the transmis-
sion maxima and the scaling of the peak widths. Since
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Figure 1: (a) Simulation setup with an injector and collector lead (red) and drain leads on each side (blue). (b) Classical
trajectories for the massless Dirac Hamiltonian at U0 = 2E. (c)–(g) Classical trajectories (red) and caustics (black) for the
Hamiltonian including trigonal warping. Unless otherwise indicated, E = 0.4 eV. (c) K-valley, U0 = 0.8 eV, θ = 0, (d)
K′-valley, U0 = 0.8 eV, θ = 0, (e) Section of the butterfly caustic. K′-valley, E = 0.6 eV, U0 = 1.18 eV, θ = 0, (f) K′-valley,
U0 = 0.795 eV, θ = π/12, (g) U0 = 0.8 eV, θ = π/6.

the transmission maximum occurs at a different potential
for the two valleys, we find that a graphene n-p junction
can act as a valley filter and that one can manipulate the
polarization by changing the potential strength. This
is similar to the situation in chiral metamaterials [6–9],
where one can select a certain polarization by tuning the
frequency of the incident light.

Trigonal warping adds terms that are quadratic in mo-
mentum to the linear term in the massless Dirac Hamil-
tonian [18, 39, 40]. We make all terms in the Hamiltonian
dimensionless [24] by scaling energies with the electron
energy E and lengths with L1, the distance from the
source to the junction, see Fig. 1(a). Using first-order
perturbation theory, we obtain the classical Hamiltonian
in dimensionless variables [18, 39, 40, 53, 54]:

H±α = ±
(
|p|+ αµ|p|2 cos

[
3(φp + θ)

])
+ U(x), (1)

where µ = E/6t, with t the nearest-neighbor hopping,
indicates the relative importance of the quadratic term
and α equals +1 (−1) for valley K ′ (K). The an-
gle φp = arctan(py/px) and θ determines the orienta-
tion of the sample, with θ = 0 corresponding to zigzag
edges along the x-direction. The dimensionless semiclas-
sical parameter h = 3taCC/2EL1, with aCC the carbon-
carbon distance.

We consider a sharp, one-dimensional junction:
U(x) = U0Θ(x), with Θ(x) the Heaviside step function.
Then py is conserved and the classical action for an elec-
tron with energy E emitted from (−L1, 0) equals [12, 29]

Snp(x, y, py) = L1 px,e,α(py) + x px,h,α(py) + y py, (2)

with px,e,α (px,h,α) the longitudinal momentum in elec-
tron (hole) region, i.e. H+

α (px,e,α(py), py) = E. The clas-
sical trajectories, i.e. the points where ∂Snp/∂py = 0,

and the caustics, where ∂2Snp/∂p
2
y vanishes as well, are

plotted in Fig. 1 for various parameters. The Dirac
Hamiltonian, µ = 0 in Eq. (1), is symmetric in px and py.
When U0 = 2E, this leads to an ideal focus [12], at which
all derivatives of Snp with respect to py vanish [29]. This
generally changes when we include trigonal warping. For
θ = 0, the symmetry in py is preserved, leading to re-
flection symmetry in the x-axis. However, the symmetry
in px is broken and we obtain cusp caustics, shown in
Fig. 1(c) and (d). Because we also break the symmetry
between the valleys K and K ′, their cusp points, at which
∂4Snp/∂p

4
y 6= 0, are at different positions on the x-axis.

Tuning the potential, we obtain sections of the butter-
fly caustic, see Fig. 1(e), and eventually pass through
the butterfly singularity, at which ∂4Snp/∂p

4
y = 0, but

∂6Snp/∂p
6
y 6= 0 [29, 35]. For generic θ, Fig. 1(f), both

symmetries are broken and the cusp point is no longer
on the x-axis. Only when θ = π/6 (armchair edges), the
symmetry in px is restored and we recover an ideal focus
at U0 = 2E.

From here on, we consider zigzag edges along the x-
direction (θ = 0), unless otherwise indicated, as they
illustrate the generic situation. We obtain an expression
for xcusp,α by solving ∂2Snp/∂p

2
y = 0 for x, and setting

py = 0 [29]. Expanding the result up to second order in
αµ, we find, in units with dimensions

xcusp,α = L1
U0 − E
E

(
1− α4U0

3t

)
U0=2E
==== L1 −

8αE

3t
L1.

(3)
Hence, the cusp point for the valley K (K ′) is always to
the right (left) of the focus for the Dirac Hamiltonian,
given by the first term. Although the above expansion is
only sufficient for low energies, it clearly indicates that
the effect is sizeable.

We study these effects by performing tight-binding
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Figure 2: (a)–(c) Results of the tight-binding simulations with L1 = 100 nm. The density |Ψav,α|2 is averaged over sublattices
and summed over lead modes in valley α. (a) K′-valley, E = 0.6 eV, U0 = 2E, Wi = 7.5 nm; (b) K′-valley, E = 0.6 eV,
U0 = 1.18 eV, Wi = 7.5 nm; cf. the classical trajectories in Fig. 1(e); (c) K′-valley, E = 0.4 eV, U0 = 2E, Wi = 40 nm. (d)–(f)
Position, on the x-axis, of the caustic (dashed and dashed-dotted lines), semiclassical maximum (solid lines) and simulated
maximum (symbols) for varying energy E, sample orientation θ and L1. The dashed grey lines indicate the Dirac result. The
parameters equal, (e, f) E = 0.4 eV; (d, f) θ = 0; (d, e) L1 = 100 nm; (d, f) Wi = 40 nm; (e) Wi = 50 nm. In all cases U0 = 2E.

simulations with Kwant [50]. We use the setup of
Ref. [38], shown in Fig. 1(a), where current enters the
sample through an injector lead and is able to exit
through a collector lead and through drain leads on each
side [55]. Considering large L2 and Wc = W , we com-
pute the sample wavefunction. Figure 2(a)–(c) shows the
resulting density, averaged over sublattices and summed
over lead modes [29, 56]. For narrow leads, i.e. large
hlead = ~vF /EWi, we observe cusp caustics in the valleys
K and K ′, see Fig. 2(a). By adjusting E and U0, we also
observe sections of the butterfly caustic, see Fig. 2(b).
Figure 2(c) shows that we obtain a bright focussing spot
for wide leads (small hlead), as predicted in Ref. [29].
Subsequently, we fit a Gaussian to a subset of the points
on the x-axis. Averaging over subsets, we obtain the
position of the maximum and an error estimate.

Within the semiclassical approximation, the wavefunc-
tion near a cusp can be constructed in terms of the
Pearcey function [29, 45, 46, 55]. We find the parameters
for this function by expanding the action (2) up to fourth
order in py. Figure 2(d)–(f) shows the predictions xmax,α,
obtained from maximizing this wavefunction, as a func-
tion of electron energy, sample orientation and L1. They
are in very good agreement with the positions extracted
from the simulations. Note that the approximation fails
for low energies, or near θ = π/6, as we are too close to
the ideal focus, at which ∂4Snp/∂p

4
y = 0. However, in

these cases, xcusp,α provides a good estimate.

Experimentally, one typically measures the transmis-
sion T as a function of the potential strength. We
therefore fix L1 and L2, set Wc = Wi and compute
the intravalley scattering for varying U0 using Kwant.

We compare these results with a semiclassical billiard
model [51, 52] that incorporates trigonal warping in the
trajectories and has uniformly distributed initial posi-
tions and transversal momenta. Figure 3 shows that the
agreement between the two methods is very good. Note
that the tight-binding transmission is slightly higher than
the billiard result on the right (left) of the peak for valley
K (K ′), most likely because of interference. Higher order
effects and intervalley scattering only mildly influence the
results. Figure 3(e) shows that, for small hlead, passing
through the butterfly singularity does not significantly
enhance the transmission.

Valley splitting is observed at all simulated energies
and the total transmission peak is broadened with re-
spect to the result of a Dirac billiard model, which ex-
plains earlier observations [38]. The transmission max-
imum for the K-valley is always at a lower potential.
Setting xcusp,α = L2 in Eq. (3) and solving for U0, we
obtain, up to O(µ2), in units with dimensions,

U0,cusp,α= E
L1 + L2

L1

(
1 + α

4E

3t

L2

L1

)
L1=L2==== 2E+

8αE2

3t
.

(4)
We also obtain predictions U0,max,α for the positions
of the maxima from our semiclassical theory. Solving
xmax,α = L2, we obtain values that are in excellent agree-
ment with the simulated peak positions, see Fig. 3(g). As
∂4Snp/∂p

4
y is lower at the K-peak, our theory also cor-

rectly predicts that it has lower maximal transmission.

The valley polarization can be increased by going to
higher energies, which increases the peak splitting. Al-
ternatively, one can increase L2, see Fig. 3(d). Finally,
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Figure 3: (a)–(e) Intravalley transmission as a function of potential strength obtained from Kwant (light colors, wavy lines)
and a billiard model (darker colors, smooth lines). (a) E = 0.4 eV, L1 = L2 = 100 nm; (b) E = 0.4 eV, L1 = L2 = 300 nm;
(c) E = 0.6 eV, L1 = L2 = 200 nm; (d) E = 0.4 eV, L1 = 100 nm, L2 = 300 nm. (e) K-valley, L1 = 100 nm, L2 = 140 nm
for various energies (in eV). For E = 0.24 eV, ∂4Snp/∂p

4
y vanishes at U0 = 0.5 eV and x = L2. (f) Valley polarization

P = (TK − TK′)/(TK + TK′) as a function of potential for E = 0.4 eV and various L1 = L2 (in nm). (g) Maximum of the
simulated intensity as a function of energy for L1 = L2 = 200 nm. We also plot the potentials at which xcusp,α and the
semiclassical (SC) xmax,α equal L2. For all figures Wi = Wc = 50 nm.

(a) 0.004

0

Mode 1

2

-2.0 -1.0 0.0 1.0 2.0
0.0

0.2

0.4

0.6

0.8

1.0

py / E

1
0

1
||
Ψ
(x
=
-

L
1
)|
|

(b)
Lead mass 0.00 0.04

0.02 0.06

0.5 1.0 1.5

-0.1

0.0

0.1

L2 (10
2

nm)
η

b
,o

u
t,

K
'
-
η

b
,i
n

,K
'

(c)

Figure 4: (a) Density |Ψav,K′ |2 from tight-binding simulations for E = 0.4 eV, mlead = 0.375 eV, Wi = 40 nm. (b) Fourier
transform (for each lead mode) of the wavefunction from (a) at x = −L1. (c) Symmetry breaking as a function of L2 for various
mlead (in eV). K′-valley, E = 0.1 eV, Wi = 50 nm. For all figures L1 = 100 nm and U0 = 2E.

one can also increase both L1 and L2, see Fig. 3(f), which
decreases the peak width ∆U0. We obtain a semiclassical
prediction for the scaling behavior of ∆U0 by performing
a Taylor expansion of the equation xmax,α = L2 around
U0,cusp,α. For L1 = L2 = L, we find that ∆U0 ∝ L−1/2

in leading order, which is in perfect agreement with the
billiard results.

Finally, we briefly discuss symmetry breaking due to
an initial sublattice polarization [29]. When we add a
constant mass mlead in the lead, we observe tilting of the
main focus, see Fig. 4. Inspecting the Fourier transform,
we observe that it is not symmetric in py, verifying ear-
lier predictions [29]. To certify that this effect can be
attributed to the Dirac character of the electrons, and
not to trigonal warping, we extract the wavefunction at
x = −L1 from Kwant and compute its evolution using
the continuum Dirac equations [29]. This reproduces the
tilting, but changes the position of the focus, confirming
our hypothesis.

The symmetry breaking can be quantified by setting
Wc = W and subsequently splitting the collector lead
at y = 0. We then extract the relative transmission
ηb,out,α through the bottom (y < 0) collector lead and
subtract the relative intensity ηb,in,α located on the sites
with negative y for the incoming modes. Figure 4(c)
shows that the amount of symmetry breaking strongly
depends on L2, as expected for a tilted focus. In agree-
ment with predictions made for the Green’s function [29],
it increases with increasing mass, decreases with increas-
ing energy, and changes sign when we change the sign
of the mass. Simulating transmission as a function of
potential strength, initial polarization seems to slightly
decrease the valley polarization.

In short, we have developed a complete semiclassical
theory of Veselago lensing in the presence of trigonal
warping. We have observed both cusp and butterfly sin-
gularities, which provide an interesting relation between
the physics of graphene and catastrophe theory [34–37].
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Our theory shows excellent agreement with tight-binding
simulations and explains previously observed peak broad-
ening [38]. We believe that our predictions could be
experimentally verified, using, for instance, a transverse
magnetic focussing setup [27]. Although this would re-
quire rather high energies, these have been experimen-
tally realized [57–60]. We remark that a smooth junc-
tion will lead to additional peak broadening [27, 38, 61],
but this makes a theoretical study much more compli-
cated [24].

We emphasize that our analysis of the disintegration
of the ideal focus does not fundamentally depend on the
fact that the Fermi surface distortion is trigonal: any
distortion that breaks the symmetry in px will lead to
the formation of cusp caustics. Therefore, our semiclas-
sical analysis can easily be carried over to other Dirac
materials, such as topological insulators [62, 63]. Since
these generally exhibit stronger band bending, the devia-
tions from the Dirac behavior will be much stronger and
therefore visible at lower energies.

We are grateful to Misha Titov and Erik van Loon for
helpful discussions. The authors acknowledge support
from the ERC Advanced Grant 338957 FEMTO/NANO
and from the NWO via the Spinoza Prize.
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[38] S. P. Milovanović, D. Moldovan, and F. M. Peeters, J.

Appl. Phys. 118, 154308 (2015).
[39] H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 65, 505 (1996).
[40] T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn.

67, 2857 (1998).
[41] J. L. Garcia-Pomar, A. Cortijo, and M. Nieto-Vesperinas,

Phys. Rev. Lett. 100, 236801 (2008).
[42] A. Rycerz, J. Tworzyd lo, and C. W. J. Beenakker, Nat.

Phys. 3, 172 (2007).
[43] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809

(2007).
[44] R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kre-

tinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grig-
orieva, K. S. Novoselov, L. S. Levitov, et al., Science
346, 448 (2014).

[45] J. N. L. Connor and D. Farrelly, J. Chem. Phys. 75, 2831
(1981).

[46] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii,
and T. Ya. Tudorovskii, Theor. Math. Phys. 177, 1579
(2014).

[47] T. Pearcey, The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science: Series 7 37,
311 (1946).

[48] J. N. L. Connor and D. Farrelly, Chem. Phys. Lett. 81,

mailto:K.Reijnders@science.ru.nl


6

306 (1981).
[49] J. N. L. Connor and P. R. Curtis, J. Phys. A: Math. Gen.

15, 1179 (1982).
[50] C. W. Groth, M. Wimmer, A. R. Akhmerov, and

X. Waintal, New J. Phys. 16, 063065 (2014).
[51] C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett.

63, 1857 (1989).
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SUPPLEMENTAL MATERIAL

DETAILED DERIVATIONS

For the convenience of the reader, this section contains the details of the derivations that have been discussed in
the main text. The semiclassical theory that we develop is based on methods that have been well-established in the
literature. For the Dirac Hamiltonian, a similar theory was presented in Ref. [29].

Hamiltonian with trigonal warping

In reciprocal space, the full tight-binding Hamiltonian for graphene is given by (see e.g. Ref. [18])

Hfull =

(
0 −tu(k)

−tu(k)∗ 0

)
, where u(k) =

∑
δi

eik·δi , (S1)

where the nearest-neighbor vectors δi are given by

δ1 = aCC (0, 1) , δ2 =
aCC

2

(√
3,−1

)
, δ3 =

aCC
2

(
−
√

3,−1
)
. (S2)

Furthermore, we choose our lattice vectors vi as

v1 = aCC

(√
3, 0
)
, v2 =

aCC
2

(√
3, 3
)
. (S3)

The electron and hole bands touch at two non-equivalent Dirac points in the Brillouin zone, named K and K ′:

K =
2π

3
√

3aCC

(
−1,
√

3
)
, K′ =

2π

3
√

3aCC

(
1,
√

3
)
. (S4)

Expanding the Hamiltonian (S1) up to second order in k around the K-point, we obtain [18, 39, 40]

HK =

(
0 3

2 taCC(kx − iky)− 3
8 ta

2
CC(kx + iky)2

3
2 taCC(kx + iky)− 3

8 ta
2
CC(kx − iky)2 0

)
. (S5)

Keeping only the linear term, we obtain the Dirac Hamiltonian. The quadratic term is the trigonal warping correction.
Expanding the Hamiltonian (S1) around the K ′-point, we find

HK′ =

(
0 3

2 taCC(kx + iky) + 3
8 ta

2
CC(kx − iky)2

3
2 taCC(kx − iky) + 3

8 ta
2
CC(kx + iky)2 0

)
. (S6)

Considering the trigonal warping term as a perturbation to the Dirac Hamiltonian, we compute the first order
correction to the dispersion relation using perturbation theory and obtain [18, 39, 40]

E±α = ±
(

3

2
taCC |k|+ α

3

8
ta2
CC |k|2 cos(3φk)

)
, (S7)

where the valley index α equals −1 for the K-valley and +1 for the K ′-valley. Furthermore, φk is the angle in k-space,
defined by tanφk = ky/kx. Let us now consider an electron with energy E and let L1 be the typical length scale of the
problem, in our case the distance from the injector lead to the junction interface. We then define the dimensionless
variables Ẽ±α = E±α /E, x̃ = x/L1, k̃ = kL1 and the dimensionless semiclassical parameter h = 3taCC/(2EL1). The
dimensionless coefficient µ = E/(6t) controls the relative importance of the second term and we require µ2 to be small
in order for our perturbative expansion to be valid. Introducing p̃ = hk̃ and omitting the tildes, we obtain

E±α = ±
(
|p|+ αµ|p|2 cos(3φp)

)
. (S8)

We remark that φk = φk̃ = φp̃. We will, from here on, omit the tildes and exclusively work with these dimensionless
variables, unless otherwise indicated.

Let us now consider a passive rotation by an angle θ, which means that we rotate the coordinate system over an
angle θ. Then the nearest-neighbor vectors δi should be multiplied (from the left) by the matrix of a rotation over an
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angle −θ. Because of this, the expressions for the Dirac points should be multiplied by the same factor. In turn, this
leads to an additional factor e3iθ in front of the quadratic term in the expansion of u(k) around the K-point, and to
an additional factor e−3iθ in its expansion around the K ′-point. Because of these additional factors, our dimensionless
expression for the energy then becomes

E±α = ±
(
|p|+ αµ|p|2 cos

[
3(φp + θ)

])
. (S9)

Using standard semiclassical arguments [53, 54], one can then show that the classical Hamiltonian functions for
electrons and holes are given by

H±α = ±
(
|p|+ αµ|p|2 cos

[
3(φp + θ)

])
+ U(x), (S10)

It is important to note that this Hamiltonian is no longer invariant with respect to the orientation of the sample, as
indicated by the presence of the orientation angle θ. In our choice of coordinates, θ = 0 corresponds to zigzag edges
along the x-axis and θ = π/6 corresponds to armchair edges along the x-axis. Furthermore, we remark that the lattice
is invariant under a π/3 rotation, but that such a rotation interchanges the sublattices A and B and the valleys K
and K ′.

Caustics

We consider an n-p junction with the one-dimensional potential

U(x) = U0Θ(x), (S11)

where Θ(x) is the Heaviside step function. As the potential is one-dimensional, the transversal momentum py is
a conserved quantity. For x < 0, the charge carriers are electrons with longitudinal momentum px,e,α that satisfies
E+
α (px,e,α, py) = E. For x > 0, we have holes with longitudinal momentum px,h,α that satisfies E−α (px,h,α, py)+U0 = E.
Let us study electrons that are emitted by a point source at (−L1, 0) and are incident on this potential. It easily

follows that the classical action is given by [12, 29]

Snp(x, y, py) = L1px,e,α(py) + xpx,h,α(py) + ypy. (S12)

The trajectories, which are the stationary points of the action, i.e. the points where ∂Snp/∂py = 0, are given by

y = −L1
∂px,e,α
∂py

− x∂px,h,α
∂py

. (S13)

The caustic is the set of points (xcst, ycst) where the second derivative ∂2Snp/∂p
2
y vanishes as well. Differentiating

Eq. (S13), we obtain

xcst = −L1

∂2px,e,α/∂p
2
y

∂2px,h,α/∂p2
y

, (S14)

and we can obtain ycst by entering this value back into Eq. (S13). The cusp point (xcusp, ycusp) is the point on the
caustic where the third derivative ∂3Snp/∂p

3
y is identically zero.

Let us first look at the Dirac case for a moment. Setting µ = 0 in Eq. (S9), we see that we have rotation
symmetry in momentum space. In particular, we have reflection symmetry in px and in py. As py is conserved at
the barrier interface and the group velocity for holes is antiparallel to their momentum, symmetry in px means that
px,h,α = −px,e,α when U0 = 2E. This leads to an ideal focus, as the electrons are focussed in the mirror image of the
source [12, 29]. Furthermore, the symmetry py → −py ensures that the classical trajectories are also symmetric in
the x-axis.

When we include trigonal warping, the dispersion relation becomes dependent on the sample orientation θ. For
θ = 0, which means that we have zigzag edges along the x-axis, the symmetry in px is broken, but the symmetry
in py is preserved. Therefore, we no longer have an ideal focus at U0 = 2E, but the trajectories are still symmetric
in the x-axis. On the other hand, when θ = π/6, we do have symmetry in px, but the symmetry in py is broken.
Indeed, we immediately see that cos(3[φp +π/6]) = − sin(3φp) and setting p̄ = (−px, py), we observe that sin(3φp̄) =
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sin(3[π − φp]) = sin(3φp). Therefore, we have an ideal focus at U0 = 2E when we have armchair edges along the
x-axis. However, the trajectories are no longer symmetric in the x-axis. For generic θ, both symmetries are broken
and there will be no ideal focus at U0 = 2E.

Let us now take a closer look at θ = 0, as the symmetry in py considerably simplifies the calculations. Since
E±α (px,−py) = E±α (px, py), we also have px,e,α(py) = px,e,α(−py), and the same identity holds for px,h,α. Therefore,
their second derivatives are symmetric with respect to py, which implies that xcst is. Hence, we infer from Eq. (S13)
that the caustic is symmetric in the x-axis, which, in particular, means that the cusp points are. As the third
derivative ∂3Snp/∂p

3
y is antisymmetric in py, it vanishes at py = 0 and there is always a cusp point on the x-axis. In

what follows, we investigate the position xcusp of this particular cusp point. We first note that when we expand Snp
at (xcusp, 0) in py around py = 0, the terms of odd order vanish. Let us now determine the various deratives of px
with respect to py by differentiating the energy relation (S9). Fixing the energy E and considering px to be a function
of py, we obtain

∂E±α
∂px

∂px
∂py

+
∂E±α
∂py

= 0. (S15)

Since we consider θ = 0, the second term vanishes at py = 0, and we find that ∂px/∂py equals zero at that point. Of
course, we could already have concluded this from its antisymmetry in py. Taking the derivative of the above result,
and using that the first derivative of px vanishes, we obtain

∂2px
∂p2

y

= −
∂2E±α /∂p

2
y

∂E±α /∂px
, (S16)

where all derivatives are to be evaluated at zero py. Evaluating the energy derivatives using Eq. (S10), we find

∂E±α
∂px

= ±px + 2αµp2
x

|px|
,

∂2E±α
∂p2

y

= ±1− 7αµpx
|px|

,
∂2px
∂p2

y

= − 1− 7αµpx
px + 2αµp2

x

. (S17)

We note that the last expression does not contain a ±-sign and is therefore the same for both electrons and holes.
To find the position of the cusp, we need to know the momenta px,e,α and px,h,α of the right-moving charge carriers.

For electrons, for which me need to take the plus sign in Eq. (S10), we set U0 = 0, require that px > 0 and set φp = 0.
We then obtain

px,e,K =
1

2µ

(
1−

√
1− 4µE

)
, px,e,K′ =

1

2µ

(
−1 +

√
1 + 4µE

)
, (S18)

where we have used that for low energies the leading term in the Taylor expansion should give px,e,α = E. For holes,
we take the minus sign in Eq. (S10) and set U = U0 > E, px < 0 and φp = π. Requiring that px,h,α = U0 −E in the
zeroth order expansion in µ, we have

px,h,K =
1

2µ

(
1−

√
1 + 4µ(U0 − E)

)
, px,h,K′ =

1

2µ

(
−1 +

√
1− 4µ(U0 − E)

)
(S19)

Inserting the results (S18) and (S19) into Eq. (S14), we obtain an expression for xcusp,α. This expression is rather
cumbersome, but can be easily implemented into a computer algebra system. It is used to generate the cusp lines in
Fig. 2(d)–(f).

To gain more insight into the splitting, we perform a first order Taylor expansion in µ and obtain

xcusp,α = L1
U0 − E
E

(1− 8αµU0) +O(µ2). (S20)

For small µ, we therefore find the distance between the two cusp points as

∆xcusp = xcusp,K − xcusp,K′ = 16µL1U0
U0 − E
E

+O(µ2). (S21)

Going back to units with dimensions, we have, up to second order in µ,

xcusp,α = L1
U0 − E
E

(
1− α4U0

3t

)
. (S22)

and the distance between the two cusp points equals

∆xcusp = xcusp,K − xcusp,K′ = L1
8U0

3t

U0 − E
E

. (S23)

The implications of these equations have been extensively discussed in the main text.
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Position of the maximum

Within the Dirac approximation, one can construct an analytical solution for scattering by a sharp n-p junction [12,
29]. The wavefunction in the hole region can be expressed as an integral over the transversal momentum py, which
labels the trajectories:

Ψ(x, y) =

∫ ∞
−∞

dpy f(x, y, py)eiSnp(x,y,py)/h. (S24)

The action Snp is given by Eq. (S12), with µ = 0 for the Dirac case, and the amplitude function f(x, y, py) depends on
the details of the source [29]. This expression is not only valid for the Green’s function, but also for current injection
through a lead.

Based on general, partially semiclassical, principles, expression (S24) should still be valid when we include trigonal
warping. However, in this case, we have µ 6= 0 in the action Snp and the amplitude f(x, y, py) is likely a more
complicated function. Within the semiclassical approximation, which is valid for small h, we can compute the
maximum of the wavefunction (S24) near a cusp point using the Pearcey approximation [29, 45, 46]. Although this
approximation typically predicts too large values for the wavefunction, it accurately predicts the position of the
maximum, even for relatively large values of h [29]. A key observation is that, within this approximation, the position
of the maximum does not depend on the function f(x, y, py), but only on the action Snp. When we include trigonal
warping, we can therefore obtain a reliable result for the position of the main focus without solving the full problem.
However, this approximation is only valid when we consider sufficiently large values of a4. Otherwise, we are dealing
with a higher order singularity, and the wavefunction should be approximated using a different special function.

Before applying the Pearcey approximation to our problem, let us briefly review it and introduce the relevant
notations. The main contribution to the integral (S24) is given by the critical points, where ∂Snp/∂py vanishes.
This gives rise to the classical trajectories, which we discussed in the previous subsection. At the caustic, the second
derivative also vanishes, and at the cusp the third derivative is also identically zero:

∂Snp
∂py

=
∂2Snp
∂p2

y

=
∂3Snp
∂p3

y

= 0. (S25)

We obtain the simplest approximation to the wavefunction (S24) near a cusp point by making a Taylor expansion of
the action Snp around the critical point (xcusp, ycusp, py,0) up to the first nonzero term. This gives

Snp(x, y, py) = S(4)(x, y, py) +O(β5) = q0(x, y) + q1(x, y)β +
q2(x, y)

2
β2 +

q3(x, y)

6
β3 +

q4(x, y)

24
β4 +O(β5), (S26)

where β = py − py,0. Because of Eq. (S25), the expansion coefficients satisfy:

q0(x, y) = a0 + 〈b0, z〉+O(z2), q1(x, y) = 〈b1, z〉+O(z2), q2(x, y) = 〈b2, z〉+O(z2),

q3(x, y) = O(z) q4(x, y) = a4 +O(z).
(S27)

where z = x− x0 = (x, y)− (xcusp, ycusp).
The leading order approximation to the wavefunction can then be expressed [29, 45, 46] in terms of the Pearcey

function P±(x), which is defined by the integral

P±(u, v) =

∫ ∞
−∞

exp
(
±it4 + iut2 + ivt

)
dt, (S28)

where the superscript plus or minus corresponds to the sign in front of the t4 term. This function possesses two
important symmetries [48, 49], which simplify computations:

P±(u,−v) = P±(u, v), P−(u, v) = [P+(−u,−v)]∗. (S29)

These can be verified directly using definition (S28). Furthermore,

P±v (u,−v) = −P±v (u, v), P±u (u,−v) = P±u (u, v), (S30)

where P±v (u, v) is the partial derivative with respect to the second argument, and P±u (u, v) the partial derivative
with respect to the first argument. Numerical values of the Pearcey function can be computed rather efficiently by
deforming the integration contour [49] or by numerically solving a differential equation [48].
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Within the Pearcey approximation, one then obtains the following approximation to the integral (S24) [29, 45, 46]:

Ψ(x, y) = f(xcusp, ycusp, py,0) 4

√
24h

|a4|
exp

[
i

h
(a0 + 〈b0, z〉)

]
P±

[√
6

h|a4|
〈b2, z〉, 4

√
24

h3|a4|
〈b1, z〉

]
+O(h1/2), (S31)

where the coefficients are defined by Eq. (S27). Taking the norm of this approximation, we indeed see that the position
of its maximum does not depend on the function f , but only on the expansion coefficients of the action, i.e. on purely
classical quantities. We see from Eq. (S29) that the Pearcey function is symmetric, and a numerical study shows that
its maximum lies on the x-axis. One can show explicitly that [48]

P+(x, 0) =
π|x|1/2 exp(−ix2/8)

4 sin(π/4)

[
exp(iπ/8)J−1/4(x2/8)− sign(x) exp(−iπ/8)J1/4(x2/8)

]
, (S32)

where Jα(x) is the Bessel function. The maximum of |P+(x, 0)| can be determined numerically and lies at x0,+ =
−2.19863. By the symmetry relations (S29), we therefore find that the maximum of |P±(x, 0)| lies at x0,± = ∓2.19863.
Therefore, when a4 is sufficiently large, we can find a good approximation for the position of the maximum by solving
the set of equations √

6

h|a4|
〈b2,xmax − xcusp〉 = x0,±,

4

√
24

h3|a4|
〈b1,xmax − xcusp〉 = 0. (S33)

We now return to the case θ = 0, for which we explicitly computed the position of the caustic in the previous
section. The coefficient a4,α is given by

a4,α = L1
∂4px,e,α
∂p4

y

+ xcusp,α
∂4px,h,α
∂p4

y

, (S34)

where all quantities are to be evaluated at py = 0. We can obtain an expression for the fourth derivative of px in
the same way as we obtained an expression for the second derivative in Eqs. (S15)–(S17), using the fact that the odd
order derivatives of E±α with respect to py vanish. We find that

∂4px
∂p4

y

= −3
1 + 3αµpx + 158αµ3p3

x

p3
x(1 + 2αµpx)3

(S35)

Inserting this into Eq. (S34), we obtain a complex expression for a4,α. Performing a Taylor expansion in µ, we find

a4,α = −3L1
U0

E3

U0 − 2E

(U0 − E)2
− 24αµL1

U0

E(U0 − E)2
+O(µ2)

U0=2E
==== −48αµ

L1

E2
+O(µ2) (S36)

At U0 = 2E, the term that is zeroth order in µ vanishes. We then have a4,K > 0, which means that the maximum lies
left of the cusp point for the K-valleys, and a4,K′ < 0, i.e. the maximum lies right of the cusp point for the K ′-valley.
In both cases, the maximum lies closer to the point x = L1 than the cusp point.

The coefficients bn,α in Eq. (S27) can be computed as

bn,α,x =
∂

∂x

∂nSnp
∂pny

∣∣∣∣
x=xcusp

, bn,α,y =
∂

∂y

∂nSnp
∂pny

∣∣∣∣
x=xcusp

. (S37)

Specializing to θ = 0, we obtain

b1,α,x = 0, b1,α,y = 1, b2,α,x =
∂2px,h,α
∂p2

y

, b2,α,y = 0, (S38)

where we have used that ∂px/∂py = 0. We can make an expansion of b2,α,x and find

b2,α,x =
1

U0 − E
+ 8αµ+O(µ2) (S39)
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Combining Eqs. (S33) and (S38), we observe that the maximum is on the x-axis, and that its position can be found
by solving √

6

h|a4,α|
b2,α,x(xmax,α − xcusp,α) = x0,± (S40)

Hence, the position of the maximum equals

xmax,α = xcusp,α +
x0,±

b2,α,x

√
h|a4,α|

6
(S41)

We emphasize that we cannot use this approximation for low energies (small µ) at U0 = 2E, since a4,α is small in
that case, which implies that we are considering a section of a higher order caustic. In fact, we are too close to the
Dirac case, where an ideal focus is observed at U0 = 2E.

Finally, let us briefly return to units with dimensions and investigate the dependence of this expression on L1 at
constant E and U0. When restoring dimensions, the dimensionless variables x̃max,α and x̃cusp,α, which are used in
Eq. (S41), are replaced by xmax,α/L1 and xcusp,α/L1. Furthermore, we note that xcusp,α scales linearly with length.
The coefficient a4,α is therefore independent of the length scale of the system, as is b2,α,x. Hence, the only part of
the second term that scales with length is the semiclassical parameter h, which is proportional to 1/L1. Therefore,
we conclude that the dependence of xmax,α on L1 is given by

xmax,α(L1) = c1L1 + c2
√
L1, (S42)

where c1 and c2 are constants that do not depend on L1. This behavior is indeed observed in Fig. 2(e).

Higher order singularities

For θ = 0, let us also consider the points where a4,α vanishes and at which we pass through a higher order
singularity. In the simplest approximation, we can analyze these points by looking at the first order Taylor expansion
in µ, Eq. (S36). For the K-valley, the term that is linear in µ is always positive, whereas it is always negative for the
K ′-valley. The first term does not depend on the valley index, but is negative for U0 > 2E, and positive for U0 < 2E.
Therefore, the coefficient a4,α vanishes at U0 > 2E for the K-valley and at U0 < 2E for the K ′-valley. Neglecting
terms of O(µ2) in the expansion of a4,α and solving for the potential U0,hs,α where it vanishes, we obtain

U0,hs,α = 2E − 8αµE2. (S43)

When we consider the Dirac Hamiltonian, i.e. µ = 0, this reduces to U0,hs,α = 2E, as we already extensively discussed.
Let us also compute the sixth order derivative of the action at the cusp, to see whether it is nonzero at the points
where a4,α vanishes. We have

a6,α =
∂6Snp
∂p6

y

= L1
∂6px,e,α
∂p6

y

+ xcusp,α
∂6px,h,α
∂p6

y

, (S44)

where the derivatives are to be evaluated at zero py. Using the same procedure as before to compute the sixth
derivative of px with respect to py at py = 0, we obtain

∂6px
∂p6

y

= 45
−1− 5αµpx + 108µ2p2

x + 796αµ3p3
x + 1808µ4p4

x + 4260αµ5p5
x

p5
x(1 + 2αµpx)5

(S45)

Inserting the momenta (S18) and (S19) into this result, we obtain an expression for a6,α. We can then specialize to
the point U0,hs,α, where a4,α vanishes. Inserting the result (S43) and expanding the result up to first order in µ, we
obtain

a6,hs,α = 720αµ
L1

E4
. (S46)

We see that this coefficient is indeed nonzero when µ is nonzero, indicating that the butterfly singularity is the highest
type of singularity that can be expected in the system when trigonal warping is included. This is confirmed by a
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numerical analysis, where we numerically solve for U0,hs,α without neglecting higher order terms in µ and insert the
result into a6,α. For the K ′-valley, one then has a6,hs,α > 0 and for the K-valley, one has a6,hs,α < 0. The caustics
that are observed in the set of classical trajectories, see Figs. 1(e) and S7, agree with this conclusion [35].

Determining the position of the maximum for this higher order singularity requires a special function involving
exp(iu6) in the integrand. We will not go into this here, since the generic singularity in our system is the cusp.
Instead, we determine the position of the butterfly singularity. Entering U0,hs,α into Eq. (S14) and expanding the
result up to first order in µ, we obtain

xhs,α = L1(1− 24αµE), (S47)

which reduces to the Dirac result xhs,α = L1 when we set µ = 0.

Position of the maximum of the transmission peak when varying U0

Let us now consider the case θ = 0 and have a look at the transmission as a function of potential strength. Fixing
L1 and L2 and varying the potential U0, one finds a value U0,max,α at which the transmission is maximal. We
expect this maximum to be reached when the position xmax,α of the maximum equals L2. Therefore, we can find an
approximation to U0,max,α by replacing xmax,α by L2 in Eq. (S40) and by subsequently solving for U0. Since it is not
easy to solve this equation analytically, we use numerical methods to find a solution.

Alternatively, we can consider the potential U0,cusp,α for which xcusp,α equals L2. This will give us an estimate
of the potential at which the maximum is reached. This estimate will generally be too low (high) for the valley K
(K ′), since the maximum in real space lies to the left (right) of the cusp point. We remark that when L1 = L2 and
we are considering low energies, this is the only method with which we can say something about the position of the
maximum, as Eq. (S40) is not valid for this case due to the smallness of a4,α. Looking at Eq. (S14), we see that the
only dependence on the length scale of the system is through L2/L1. Since these are dimensionless quantities, and
their ratio is independent of the length scale of the system, our first conclusion is that U0,cusp,α does not depend on
this length scale. Let us now compute U0,cusp,α for low energies, which correspond to small values of µ. We can then
use the expansion (S20) for xcusp,α and solve the equation xcusp,α = L2 for U0. Expanding the final result for U0,cusp,α

in µ, we obtain

U0,cusp,α = E

(
1 +

L2

L1

)(
1 + 8αµE

L2

L1

)
+O(µ2)

L1=L2==== 2E + 16αµE2 +O(µ2). (S48)

For the Dirac case, where µ = 0, we obtain U0,cusp,α = E(1 + L2/L1), which is the solution of the equation L1(U0 −
E)/E = L2 that one easily establishes for the Dirac equation. From Eq. (S48), we then immediately see that the
maximum for the K-valley occurs at a lower potential than for the Dirac equation, whereas the maximum for the
K ′-valley occurs at a higher potential than for the Dirac equation.

Height of the transmission peak when varying U0

We also investigate the maximal height of the transmission peak that is obtained by varying U0, in order to see
whether it differs for the valleys K and K ′. Although the Pearcey approximation, Eq. (S31), generally predicts too
high values [29] for the absolute value of the wavefunction when we consider small h, we may be able to obtain some
qualitative information about this difference.

Looking at Eq. (S31), we see that the peak height is proportional to the inverse of |a4,α| and to the amplitude
function f(xcusp,α, ycusp,α, py,0), which should be evaluated at U0,max,α. However, we do not expect that the latter
function will significantly contribute to a difference in peak height, considering its functional form for the Dirac
equation, see Ref. [29]. For the Dirac equation, the function f essentially consists of two parts. The first part comes
from the electron source and depends on the angle of incidence and the sublattice polarization. The second part is the
transmission coefficient through the barrier, which is to be evaluated at py,0. Because of the symmetry of the system,
py,0 = 0 for both valleys. In the Dirac picture, this corresponds to normal incidence, i.e. the incidence angle φ = 0,
and hence all phase factors that depend on the angle equal unity. Furthermore, at normal incidence we have Klein
tunneling, i.e. the transmission is unity regardless of the height of the potential. Although trigonal warping certainly
introduces corrections in the amplitude function, we do not expect that these will greatly influence either of the two
factors at the cusp point. Therefore, we believe that the amplitude function f at the cusp point depends only weakly



14

on both the potential U0 and the valley index α. We thus believe that the factor that has the largest influence on
a possible difference in peak height between the two valleys is the coefficient |a4,α|, on which we therefore focus our
attention.

As with the position of the maximum, one generally needs to resort to numerical methods to obtain the coefficient
|a4,α| at U0,max,α. However, to gain qualitative understanding of the effect, and to be able to obtain an analytical
expression, we can also evaluate the coefficient a4,α at U0,cuspα, given by Eq. (S48). Expanding the result up to first
order in µ, we obtain

a4,α = 3
L1

E3

(
L2

1

L2
2

− 1

)
− 72αµ

L1

E2

L1

L2

(
1 +

L1

L2

)
+O(µ2). (S49)

For L1 = L2, we see that the first term vanishes. The absolute value of the second term is equal for both values of α,
implying that, for small values of µ and hence for low energies, the transmission peaks for both valleys will be equal
in height when we consider L1 = L2.

If we want to see whether this changes when we go to higher energies, we need to consider the second term in the
expansion of a4,α. Unfortunately, when we expand xcusp,α to second order in µ, the equation xcusp,α = L2 becomes
third order in U0, which makes the expression for U0,cusp,α much more complicated. This also makes the second order
expansion of a4,α in µ at U0,cusp,α very cumbersome. Nonetheless, we can say something about it by taking another
look at our previous equations. The key observation is that in all our equations µ appears together with α in the
combination αµ. This holds for the Hamiltonian (S10) and for the momenta (S18) and (S19) and therefore also for
all derived quantities, such as xcusp,α and a4,α. This implies that we are actually dealing with an expansion in αµ
rather than in just µ, which means that the second term in the expansion is proportional to α2µ2. Since α2 = 1, this
term breaks the symmetry between the two valleys that is present in the linear term. Therefore, when we include the
quadratic term in the expansion, |a4,α| is different for the two values of α.

Unfortunately, this analysis does not show whether the sign in front of the second term is positive or negative. A
numerical study of the expansion shows that it is generally positive, i.e. that |a4,K | is larger than |a4,K′ |. We find
the same effect when we numerically evaluate a4,α at U0,max,α for typical energies and length scales. This predicts
that, for high energies, the height of the transmission peak for the K-valley is lower than the height for the K ′-valley,
which is indeed seen in our numerical experiments.

We remark that the situation changes when we consider incident electrons with a uniform angular distribution,
rather than a distribution that is uniform in momenta. For a uniform angular distribution, we need to integrate over
the incidence angle φ rather than over the momentum py. Changing variables, we obtain an additional factor ∂φ/∂py
in the amplitude. It is clear that this does not change the classical trajectories, and that the position and width of
the maximum will be the same for both distributions. However, the height of the transmission peak is affected by
this factor. The angle φ is determined by the two components of the group velocity of the electrons, i.e.

φ(py) = arctan

(
∂Hα/∂py
∂Hα/∂px

)
. (S50)

In the Pearcey approximation, we need to evaluate ∂φ/∂py at py,0 = 0. After some calculus, using the fact that
∂Hα/∂py vanishes at py = 0, we find

∂φ

∂py

py=0
====

∂2Hα/∂p
2
y

∂Hα/∂px
=

1

E
− 8αµ+O(µ2). (S51)

We therefore see that this factor is larger for the K-valley than for the K ′-valley, which could counter the effect of
the coefficient a4. Since the values given by the Pearcey approximation are generally too large for small values of h,
these equations cannot tell us what the combined effect of these two factors will be. Our billiard simulations show
that for a uniform angular distribution both peaks are approximately equal in height.

Scaling of the width of the transmission peak

We have already stated that the maximal transmission will be obtained for the potential U0,max,α for which xmax,α =
L2. Changing the potential, we obtain a peak in the transmission, which has a full width at half maximum (FWHM)
∆U0,α. Let us now consider the special case L2 = L1 = L and see how this width ∆U0,α changes when we vary L. To
this end, we first need to find the potential U0,left,α, where the transmission equals a certain amount, for instance half,
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of its maximal value. Let us therefore denote by x1,± (x2,±) the point on the x-axis to the left (right) of x0,± where
the absolute value of the Pearcey function P±(x, 0) equals 1/

√
2 of its maximal value. By symmetry, these points are

related by x1,± = −x2,∓. Before, we obtained an estimate for xmax,α by solving Eq. (S40). To obtain U0,left,α, we
replace x0,± in Eq. (S40) by x2,± and change xmax,α to L. Then U0,left,α is given by the potential U0 that solves this
equation for a given energy. Similarly, replacing x0,± by x1,±, we find U0,right,α.

By the above procedure, we obtain two equations, namely

L = xcusp,α(E,U0,left,α) +
√
hg(E,U0,left,α)x2,± , L = xcusp,α(E,U0,right,α) +

√
hg(E,U0,right,α)x1,± , (S52)

where

g(E,U0) =
1

b2,α,x

√
|a4,α|

6
. (S53)

We remark that, since we are using dimensionless units, L = 1 and xcusp,α, given by Eq. (S14), does not depend on
the length scale of the system. Since both U0,left,α and U0,right,α are close to U0,cusp,α, we can perform a first order
Taylor expansion of xcusp,α(E,U0) in U0 around U0,cusp,α. When we also expand g(E,U0) to zeroth order around
U0,cusp,α, we obtain the set of equations

L = xcusp,α(E,U0,cusp,α) +
∂xcusp,α

∂U0

∣∣∣∣
U0,cusp,α

(U0,left,α − U0,cusp,α) +
√
hg(E,U0,cusp,α)x2,±,

L = xcusp,α(E,U0,cusp,α) +
∂xcusp,α

∂U0

∣∣∣∣
U0,cusp,α

(U0,right,α − U0,cusp,α) +
√
hg(E,U0,cusp,α)x1,±.

(S54)

We note that U0,cusp,α solves the equation xcusp,α(E,U0) = L, whence the first term on the right-hand side cancels the
term on the left-hand side in both equations. Subtracting the two equations above, and performing some elementary
operations, we find that

∆U0,α = U0,right,α − U0,left,α =
g(E,U0,cusp,α)

∂xcusp,α/∂U0
(x2,± − x1,±)

√
h (S55)

Since the predictions given by the Pearcey approximation are usually too large, we do not expect the estimate (S55)
to be very precise. However, it does give us information on the scaling behavior of ∆U0,α with L. Since U0,cusp,α

does not depend on the length scale of the system, as we established above, the only dependence on length is in the
semiclassical parameter h. Therefore, we conclude that, as we vary the potential U0, the width of the transmission
peak scales as L−1/2.

One may object that the scaling behavior expressed in Eq. (S55) was obtained using a first order Taylor expansion of
xcusp,α and a zeroth order expansion of g(E,U0). When we also include the first-order term in the Taylor expansion of
g(E,U0) around U0,cusp,α, the expression for ∆U0,α becomes more complicated. However, when we expand the result,
we still find that the leading-order term is proportional to L−1/2, although we also obtain corrections of order L−1

and higher. This statement remains true when we add the second-order terms in both Taylor expansions. Therefore,
the leading-order term of the width of the transmission peak scales as L−1/2.

Finally, let us briefly say something about the difference in peak width between the K and K ′ valleys. It is hard to
perform an analytical study of the Eqs. (S52) to find an analytical expression for the width of the peak. However, we
can study their solutions numerically for both valleys. Because of the limitations of the Pearcey approximation, the
width that is predicted by such a study is probably not very accurate. However, a numerical analysis does predict
that the peak width will generally be larger for the K ′-valley than for the K-valley, in agreement with our numerical
experiments.
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DETAILS OF THE NUMERICAL SIMULATIONS AND DATA PROCESSING

This section contains additional information on the numerical implementation and the way the data were processed.

Setup and data processing for the simulations using the Kwant code

For the numerical simulations using the Kwant code [50], we create a sample using the setup shown in Fig. 1(a). It
consists of an injector lead of width Wi through which the particles enter and a collector lead of width Wc through
which they exit. Particles can also exit through the two drain leads on the side, which diminish scattering by the sides
of the sample and thereby prevent infinite internal reflections. The injector lead is modelled as a semi-infinite ribbon,
with translation vector mv1 +nv2, where v1 and v2 are the lattice vectors defined in Eq. (S3). In our standard setup,
m = 1 and n = 0, which means that the leads have zigzag edges along the translationally invariant direction. When
n 6= 0, the translation vector makes an angle θ with the vector v1. This angle corresponds to the angle θ of the passive
rotation that we considered in the detailed derivations. When θ = 0, which means that we are in the standard setup,
we can easily separate the modes in the K and the K ′-valley by their momentum [56]. When we consider rotated
samples, we only consider those angles θ for which we can clearly separate the modes in different valleys. For θ = 0,
we have checked that the lead wavefunctions obtained from the Kwant code are in agreement with the solutions of
the continuum Dirac model [56].

For the computations of the wavefunction in real space, Wc equals W , the width of the sample. We choose the length
L2 from the junction interface to the collector lead sufficiently long, and have checked that it does not significantly
influence the outcomes. The sample width W was typically chosen as 2L1, with L1 the distance from the injector lead
to the junction interface. We consider this width realistic and at the same time sufficiently large to not substantially
influence the outcome. From a computation of the S-matrix, we conclude that intervalley scattering is present, but
is not the dominant scattering process. The amount of intervalley scattering, measured as a fraction of the total
transmission into the collector lead, is larger for lead modes with higher transversal momentum, most likely due to
interaction with the drain leads at the edges. It ranges from approximately 1% for the lowest lead mode, which is
almost completely transmitted into the collector lead, up to 60% for higher lead modes, which are largely transmitted
into the drain leads and therefore have a much smaller effect on the outcome. We come back to the size of intervalley
scattering and provide a more quantitative picture later on, when we discuss scattering as a function of potential
strength. When drain leads are absent, the position of the focus is somewhat changed, but valley splitting is still
observed. We ascribe the change of position to additional internal reflections in the electron region, which make their
way into the hole region and cause additional interference.

In order to be able to compare our computed wavefunction with semiclassical results, we do not plot the square
of the absolute value of the wavefunction on each site, but instead average it over the two sublattices to obtain the
envelope function. We do this, for each mode separately, by averaging the wavefunction over a site and its three
neighboring sites. Numerically, we replace |Ψi,α,n|2, with Ψi,α,n the wavefunction on site i resulting from lead mode
n in valley α, by |Ψi,av,α,n|2 = 1

2 |Ψi,α,n|2 + 1
6

∑
〈ij〉 |Ψj,α,n|2.

We obtain the total wavefunction in valley α by adding the averaged wavefunctions of all of the modes in that valley,
i.e. |Ψav,α|2 =

∑
n |Ψav,α,n|2, where we have suppressed the site index i. Subsequently, we determine the position

of the focus on the line y = 0. Since the maximum of the wavefunction is sensitive to the details of the sample and
shows rather strong fluctuations, we do not consider it a suitable measure for the position of the focus. Instead, we
consider a collection of data sets, and fit a Gaussian to each of them. To obtain this collection, we first compute the
minimum and maximum of |Ψav,α|2 and denote it by Imin and Imax, respectively. Subsequently, we draw a line at
Imin + x(Imax − Imin), where x varies, and extract all points between its left-most and right-most intersections with
|Ψav,α|2. We form a collection of data sets by letting x vary in steps of 0.01, typically between 0.3 and 0.7. After the
fitting, we extract the position of the maximum of each of the Gaussians. By computing the average and standard
deviation, we obtain a reliable value and an error for the position of the focus. Hence, the error bar that is shown in
the figures does not reflect the width of the focus, but rather how well its position is defined. We refer to Fig. S2 for
two examples of the fitting procedure.

For the rotated samples, we also extract the total wavefunction on the x-axis, and determine the position of the
peak for this data. This is probably not the position of the true focus, since we know from a study of the trajectories
that the cusp point does not lie at y = 0, see Fig. 1. Another indication for this is given by the tilting of the focus
in the plots of the wavefunction for the rotated samples, see Fig. S1. However, the differences are seen to be rather
small, and we obtain a good indication of the position of the focus by considering the data on the x-axis.
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In most simulations, we consider an atomically sharp potential barrier. We have also done a few simulations for a
smooth potential, see Fig. S2, which was implemented as

U(x) =
U0

2

[
1 + tanh

(
3x

LNP

)]
. (S56)

We consider LNP to be a good measure for the length scale of the potential. Alternatively, one can compute the
tangent to the potential U(x) at x = 0 and take the length scale of the potential to be the difference between the
points x− and x+, which are defined as the points where the tangent crosses zero and U0, respectively. This leads to
a width of x+ − x− = 2LNP/3.

We obtain data for a varying potential by considering a collection of samples with different potentials. We typically
divide the energy interval into 200 steps, and numerically compute the S-matrix for each value of the potential. In
this case Wc = Wi, and W = 3L1 + Wi for L1 = L2 = 100 nm and W = 2L1 + Wi when L1 is larger. We obtain
the tunneling coefficients for intravalley and intervalley scattering by adding the squared norms of the appropriate
S-matrix elements and by subsequently dividing by the total number of modes in both valleys. We observe that
intervalley scattering only mildly affects the results, see Fig. S3.

Details for the billiard model and probability distributions

In the billiard simulations, electrons are modelled as billiard balls [38, 51, 52]. We consider N electrons, with initial
positions between −Wi/2 and Wi/2 that are drawn from a uniform distribution. Their initial transversal momenta
are either drawn from a uniform distribution, or from a distribution that is uniform in the emission angle (see below).
Subsequently, we compute their classical trajectories, and check whether the particles reach the collector lead, which
has a width Wc = Wi. Furthermore, for each electron, we draw a random number between zero and one for each
junction interface on its trajectory. When this number is smaller than the tunneling probability, the electron is
transmitted by the interface; otherwise, it is reflected. We count the number nT of electrons that reach the collector
lead, and define the tunneling probability as T = nT /N . We observe a standard 1/

√
N convergence of T , roughly

independent of the dispersion relation and the distribution of the transversal momenta. We use N = 250000 in our
simulations, for which the standard deviation of T is approximately equal to 0.001.

We first consider a uniform distribution of the initial transversal momenta. For a nonrelativistic (Schrödinger)
particle in a box, the momenta are equally spaced, which gives rise to a uniform momentum distribution in the
continuum limit. This model is therefore valid when Wi � λel, with λel the (de Broglie) wavelength of the electrons,
see also Ref. [52]. Although the momenta in a graphene ribbon are not precisely equally spaced [56], it was shown
that a uniform momentum distribution gives correct predictions for graphene Hall barr experiments [38, 52]. In the
Dirac approximation, a uniform momentum distribution fpy (py) between −py,max/2 and py,max/2 corresponds to a
distribution fφ(φ) = cosφ/(2 sinφmax) of emission angles, where py,max = E sinφmax. This can be easily verified using
the formula

fφ(φ) = fpy (py(φ))
dpy
dφ

, (S57)

and the relation py = E sinφ. We have verified that, within the Dirac approximation, both samplings indeed give the
same result for the transmission.

We also consider a distribution that is uniform in the emission angle. This distribution, with a maximal emission
angle of 45 degrees, was used in Ref. [28], where the authors used billiard simulations to model their experiments.
Following their approach, we also set the maximal emission angle to 45 degrees. For the Dirac equation, the emission
angles can be converted into momenta using the relation given above. When we include trigonal warping, this
conversion is more complicated, since the emission angle is determined by the group velocity. In this case, we obtain
the transversal momenta by numerically finding the root of Eq. (S50).

The classical trajectories of the electrons are determined from Eq. (S13). The longitudinal momenta px are computed
by solving the equation H±α = E for px, given py. In the Dirac case this can be done analytically, but when we include
trigonal warping we need to use numerical methods. We also perform a calculation using the full nearest-neighbor
tight-binding Hamiltonian, given by Eq. (S1), and find that the tunneling probabilities only differ for high energies,
see Fig. S3. Furthermore, we study the influence of a finite-size sample by allowing for a cutoff in the transversal
direction. Taking out the electrons for which |y(x = 0)| > L1 + Wi/2 in the simulations with uniformly distributed
transversal momenta, we effectively limit the emission angle to 45 degrees, but find no significant influence on the
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results. We ascribe this to Klein tunneling, which collimates the electron beam, whence the largest contribution to the
transmission comes from electrons that are emitted with small angles. We therefore plot the results without cutoff.
Likewise, choosing maximal emission angles larger than 45 degrees in the model with uniformly distributed emission
angles has a minimal effect on the position of the transmission maximum, although it does influence its value. Taking
out electrons for which |y(x = 0)| > L1 +Wi/2 at a maximal emission angle of 45 degrees also has very little influence.

The tunneling coefficient through an n-p junction is well-known for the Dirac equation [20, 29]. To obtain the
tunneling coefficient when we include trigonal warping, we compute the eigenvectors of the matrix Hamiltonian, see
Eqs. (S5) and (S6), and normalize them to unit current. Subsequently, we match them at the barrier interface. We
observe that replacing the trigonal warping tunneling coefficient by the Dirac tunneling coefficient does not essentially
change the observed transmission, see Fig. S3. Since the latter can be computed much more efficiently than the former,
we use the Dirac tunneling coefficient in our simulations. This means that trigonal warping is only incorporated into
the trajectories.

Fitting the data for a varying potential

The data that we obtain when we vary the potential are rather smooth, both for the billiard simulations and for
the simulations using Kwant. To further smoothen the data, we apply a Gaussian filter with radius r. For the Kwant
data, this radius varies in integer steps between four and fourteen and for the billiard data it varies between two and
seven. Subsequently, we compute the maximum for each of these smoothened data sets. We then average over the
obtained maxima, and compute the standard deviation. For all cases, the standard deviation is smaller than the plot
marker. To check our results, we also fit a Gaussian to a reasonable subset of the raw data and extract the position
of its maximum. We find good agreement between the results of the two methods. The graphs show the results of
the first procedure.

To determine the width of the peak as a function of L1 = L2 = L, we once again smoothen the data by applying a
Gaussian filter with radius r. For the Kwant data, this radius varies between four and fourteen. For the billiard data,
it varies between two and four. We then compute the potentials U0,left and U0,right, left and right of the transmission
maximum, respectively, for which the transmission equals 80 percent of its maximal value. Averaging over the values
obtained for different Gaussian filters and subtracting U0,left from U0,right, we obtain our final result.

Data processing for simulations with a mass in the lead

In our simulations using the Kwant code, we include a mass term mlead in the lead by adding an on-site potential
mlead for sites that belong to sublattice A, and −mlead for sites that belong to sublattice B. The obtained lead
wavefunctions are in agreement with the results of the continuum model.

The computations of the wavefunction in real space are performed in the same way as before. To quantify the
asymmetry in the averaged wavefunction, we consider slices of the sample with a given x-coordinate, and subsequently
compute the fraction ηb,x,α of the total intensity on the slice that is located on the sites with y ≤ 0, that is,

ηb,x,α =

( ∑
i where

xi=x and yi≤0

|Ψi,av,α|2
)/( ∑

i where
xi=x

|Ψi,av,α|2
)
. (S58)

Since the wavefunction at x = −L1 is not symmetric in the line y = 0, because the lead wavefunction of the incoming
mode is not, we subtract the fraction ηb,−L1,α at x = −L1 to see the change in the intensity distribution.

Furthermore, we consider the continuum evolution of the initial wavefunction outputted by the Kwant code. To
this end, we extract the wavefunction from the Kwant simulation at the left-most point of the sample (x = −L1). We
split the sites into those belonging to sublattice A and those belonging to sublattice B. Subsequently, we compute
the evolution according to the continuum (Dirac) model, using Eq. (42) from Ref. [29]. We also compute the Fourier
transform of the initial wavefunction using the equations from the same paper. Comparing these simulations with the
simulations of the sample wavefunction using the Kwant code, we can establish which symmetry breaking effects can
be explained by the continuum model, and which effects are due to trigonal warping.

We also consider a second type of simulations to probe the asymmetry induced by a mass in the lead. Here, we
consider two collector leads instead of one, with the first one, called the top collector lead, between y = 0 and y = W/2,
and the second one, called the bottom collector lead, between y = −W/2 and y = 0. We then compute the S-matrix
for scattering into both collector leads and extract the transmission probabilities Tbc,n,α, which shows which part
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of incoming mode n in valley α is scattered into the bottom collector lead, and Ttc,n,α, which indicates the fraction
scattered into the top collector lead. Summing over all modes in a given valley, we obtain the total transmission
probabilities Tbc,α =

∑
n Tbc,n,α and Ttc,α =

∑
n Ttc,n,α. We then define the fraction that is transmitted into the

lower lead as

ηb,out,α =
Tbc,α

Tbc,α + Ttc,α
. (S59)

In order to obtain a measure for the asymmetry that is induced by the presence of the mass term, one should subtract
the initial fraction of the intensity that is at negative y. Unfortunately, this is not a simple endeavor, since the
total wavefunction in the lead is a sum of forward-moving modes and reflected modes and is not easily computed.
Therefore, we confine ourselves to the forward-moving modes. For each mode, we extract the total intensity located
on the sites with y ≤ 0. Summing over all incoming modes and dividing by the total intensity, we obtain the fraction
ηb,in,α of the total intensity that is located on the sites with negative y. The procedure is the same as in Eq. (S58), the
only difference being that we do not average over sublattices this time. We obtain the dependence of the asymmetry
ηb,out,α − ηb,in,α on L2 by computing the S-matrix for a collection of samples with varying L2 and fixed energy, mass
and potential. We have checked that the measure ηb,out,α − ηb,in,α is roughly independent of the width of the sample
and is roughly equal to zero for zero mass (see Fig. 4), making it a suitable measure for the asymmetry. Furthermore,
it evolves smoothly with changing width of the lead.

Finally, we compute the dependence of the transmission on the potential strength for samples with Wc = Wi in the
presence of a mass mlead in the lead. The computations using the Kwant code are done in the same way as before,
the only difference being the mass in the lead. Since the billiard model does not include information on the initial
wavefunction, the results for this model are not affected by the presence of a mass term in the lead.
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ADDITIONAL SIMULATION RESULTS

Kwant simulations in real space

(a)

(d)

(b)

(e)

(c)

(f)

Max

0

(g) (h) (i)

Figure S1: Results of the tight-binding simulations performed with the Kwant code for L1 = 100 nm, U0 = 2E. We plot the
density |Ψav,α|2, where we have averaged over sublattices and have summed over all lead modes for a given valley. The n-p
junction is at x = 0. (a) Results for the K′-valley for a narrow lead of width Wi = 16 nm and electron energy E = 0.3 eV.
There is only one mode in the lead. (b) Results for a wider lead, Wi = 40 nm, and E = 0.2 eV. There are 3 modes in the
K′-valley. (c) The results for electron energy E = 0.6 eV, with Wi = 40 nm. There are 11 modes in the K′-valley. (d) Results
for the K-valley for a narrow lead of width Wi = 7.5 nm and electron energy E = 0.6 eV. There are two modes in the lead.
(e)–(f) Results for the K-valley for the parameters used to generate the results in panels (b)–(c). The number of modes in the
lead for the K-valley is one larger than the number of modes in the K′-valley. The dimensionless semiclassical parameter in
the lead ~vF /(EWi) equals (d) 0.142; (a) 0.133; (b, e) 0.080; (c, f) 0.027. When this parameter decreases, we clearly see that
we go from a caustic to a sharp focussing spot, as predicted in Ref. [29]. (g) A rotated sample with θ = 19.1 degrees. The
lead with Wi = 50 nm and E = 0.4 eV. There are 9 modes in the K′-valley. (h) The results for the K-valley for the same
parameters as in (g). There are 10 modes in the lead. The tilting of the focus is opposite for the two valleys. (i) The results
for a sample with θ = 90 degrees, corresponding to armchair edges along the x-axis. We clearly see a sharp focussing spot at
x = L1, in accordance with the classical trajectories in Fig. 1(g). The maximum of the color scale corresponds to: (a) 0.0096,
(b, e) 0.0093, (c, f) 0.031, (d) 0.02, (g, h) 0.02, (i) 0.04.
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Determination of the maximum
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Figure S2: (a)–(d) Illustration of the fitting procedure (for θ = 0) that we use to determine the position of the maximum, as
explained in the section on the details of the numerical simulations. The simulation data show a clear three-site periodicity,
which is particularly visible for low energies. This periodicity is most likely a consequence of the additional phase factor
exp(2iπ/3 ·m), with m the site index, in the Bloch wavefunction. It arises from the fact that the x-coordinates of the points
K and K′ equal one third of the x-coordinate of a reciprocal lattice vector. In all four figures we show |Ψav,α|2, where we have
averaged over sublattices and have summed over all modes in the K′-valley. (a, b) The electron energy equals E = 0.1 eV.
The maxima of both Gaussian fits are close together, which means that the error bar is small. (c, d) The electron energy
E = 0.4 eV. The maxima are further apart, giving rise to a larger error bar. For both samples Wi = 40 nm, L1 = 100 nm and
U0 = 2E. (e) The dependence of the position of the maximum on the smoothness of the junction. Increasing the smoothness of
the junction greatly lowers the intensity of both foci. For the K′-valley, the focus remains rather sharp and is recognizeable as
such. For the K-valley, the focus becomes smeared, and the smearing becomes much stronger as the junction width increases.
Beyond LNP = 60 nm it is hard to recognize a real focus for the K-valley, and we have therefore not plotted a maximum.
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Higher order effects in the numerical simulations
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Figure S3: (a) Comparison of intravalley and intervalley scattering in a Kwant simulation for a sample with Wi = Wc = 50 nm,
L1 = L2 = 100 nm and E = 0.4 eV. We see that the effect of intervalley scattering on the transmission is small, its effect being
slightly larger for larger energies. The essential features of the transmission into the valleys K and K′ are preserved when
intervalley scattering is added. (b, c) The effect of two corrections on the billiard model for a simulation with Wi = Wc = 50 nm,
L1 = L2 = 100 nm and E = 0.6 eV. Depicted are (b) the K-valley and (c) the K′-valley. The blue line shows the results for
a simulation where the trajectories are computed using the trigonal warping Hamiltonian and the tunneling coefficient derived
from the Dirac Hamiltonian is used. For the red downward triangles, the Dirac tunneling coefficient is replaced by the trigonal
warping tunneling coefficient. We see that it does not essentially change the transmission. The green upward triangles show
the results for a simulation where the trajectories are computed using the full nearest-neighbor tight-binding Hamiltonian (S1),
while the Dirac tunneling coefficient is used. This only affects the transmission at very high energies. We see that its effect is
stronger in the K′-valley, where the transmission at high energies is higher than in the K-valley.



23

Transmission as a function of potential strength
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Figure S4: Transmission through an n-p junction as a function of potential strength for various setups. The rows correspond
to different energies, namely E = 0.2 eV (top row), E = 0.3 eV, E = 0.4 eV, E = 0.5 eV and E = 0.6 eV (bottom row). (a) In
the left column, we consider a billiard model where the emission angles are uniformly distributed, with maximal emission angle
π/4. The sample length L1 = L2 = 100 nm. We see that the peaks for both valleys are approximately equal in height. (b) In
the second column, we consider the same sample length as in the left column. We compare the results that are obtained from
Kwant simulations (light colors) with the results from our billiard model where the initial transversal momenta are uniformly
distributed (dark colors). We see that the peaks for the two valleys are no longer equal in height and that the two simulations
show very good agreement at all energies. Note that the Kwant data do not match a billiard model with uniformly distributed
emission angles. (c) In the third column, we compare the same two quantities as in (b) for L1 = L2 = 200 nm. (d) In the right
column, we show the results from the billiard model considered in (a) for L1 = L2 = 200 nm. For all samples Wi = Wc = 50 nm.
Comparing the different rows, one clearly sees that the splitting between the peaks for K and K′ increases when the energy
increases. Comparing the different columns, one sees that the peak splitting becomes more pronounced at larger length scales.
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Figure S5: Transmission through an n-p junction as a function of potential strength for various length scales L1 = L2 = L.
We consider a sample with Wi = Wc = 50 nm and an electron energy E = 0.4 eV. We show the results of the billiard model
with uniformly distributed transversal momenta (dark colors) for (a) L = 100 nm, (b) L = 200 nm, (c) L = 300 nm, (d)
L = 400 nm, (e) L = 500 nm, (f) L = 600 nm, (g) L = 700 nm, (h) L = 800 nm. For panels (a)–(c), we also show the results
of the Kwant simulations (light colors). The potential U0,max,α, at which the transmission is maximal, only changes slightly
when we increase L. However, increasing the length scale reduces the peak width (and also the transmission), which makes the
splitting more pronounced.

We note that in the simulations of the billiard model with uniformly distributed transversal momenta, reported in
Fig. S4(b) and (c) and in Fig. S5, the transmission probabilities for the valleys K and K ′ are equal at U0 = 2E. To
explain this, we first note that the sample that we are considering is symmetric in the junction interface (x = 0), as
L1 = L2 = L and Wc = Wi. Second, we note that for θ = 0 and at U0 = 2E there is a special relation between
electron and hole modes in the two valleys. We have px,e,K(py) = −px,h,K′(py) and px,h,K(py) = −px,e,K′(py). To
convince oneself of these relations, one can visualize the energy contours of the dispersion relation (S8) and invoke
electron-hole symmetry.

Alternatively, one can also show the above relations explicitly, though the derivation is slightly cumbersome.
Consider an electron in valley K, with energy E and transversal momentum py. Let px,e,K(py) be the associ-
ated longitudinal momentum, for which the relation E = |p| − µ|p|2 cos(3φp) holds, see Eq. (S10). We now note
that − cos(3φp) = cos(3[π − φp]). Multiplying both sides by minus one and adding 2E, we obtain the relation
E = −|p|−µ|p|2 cos(3[π−φp])+2E. Looking at Eq. (S10), we see that this is exactly the dispersion relation for a hole
with momentum −px,e,K(py) in valley K ′ at U0 = 2E. Therefore, we arrive at the relation px,e,K(py) = −px,h,K′(py).
The second relation can be establish analogously.

Let us now consider an electron in the K-valley, which is emitted from the point yi in the injector lead with
transversal momentum py,s and longitudinal momentum px,e,K(py,s). This electron hits the junction interface at the
point ye, after which its longitudinal momentum becomes px,h,K(py,s). We first assume that it is transmitted to
the point yc in the collector lead. Let us now also consider an electron in the K ′-valley, which is emitted from the
point yc in the injector lead with transversal momentum py,s. Then, because of the above relations, its longitudinal
momentum equals px,e,K′(py,s) = −px,h,K(py,s). Since L1 = L2, this electron hits the junction interface at the same
coordinate ye, after which its longitudinal momentum becomes px,h,K′(py,s) = −px,e,K(py,s). Because L1 = L2, this
particle subsequently reaches the collector lead at the point yi and is therefore transmitted. This means that we have
established a one-to-one relationship between trajectories in the K-valley that are transmitted and trajectories in the
K ′-valley that are transmitted. When the electron in the K-valley that we considered does not reach the collector
lead, the above procedure gives us an invalid trajectory in the K ′-valley, since this new trajectory does not start from
a point in the lead.

We also note that, since we have used the Dirac tunneling probability in our simulations, the tunneling probability at
the barrier interface does not depend on the valley. Then, because of the one-to-one relationship between transmitted
trajectories in the two valleys, the amount of electrons transmitted in valley K equals the amount of electrons
transmitted in valley K ′. Of course, this supposes that our simulations have converged, i.e. that we have sampled a
sufficiently large number of initial positions and initial transversal momenta.

With the above argument, we have shown that, at U0 = 2E, the transmission probabilities for the valleys K and
K ′ are equal within the framework of a billiard model with uniformly distributed transversal momenta. In principle,
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this argument should also hold for a billiard model with uniformly distributed emission angles. However, in our
simulations, we have limited the maximal emission angle to π/4. This breaks the above argument, as it is not certain
that the two related trajectories in the valleys K and K ′ both have emission angles smaller than π/4. Indeed, in
Fig. S4(a) and (d), we observe that for a billiard model with uniformly distributed emission angles the two transmission
probabilities are not equal at U0 = 2E.
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Figure S6: (a)–(f) Maximum of the simulated intensity as a function of energy. We also plot the potentials at which xcusp,α
and the semiclassical (SC) xmax,α equal L2. (a) n-p junction with L1 = L2 = L = 100 nm. The billiard model has uniformly
distributed transversal momenta. (b) n-p junction with L = 100 nm. The billiard model has uniformly distributed emission
angles. (c) Same as (a) for L = 200 nm. (d) Same as (b) for L = 200 nm. As have we already shown the results for U0 −E for
this case in Fig. 3(g), we now plot (U0 − E)/E on the vertical axis. (e) The results for an n-p-n junction where the electrons
regions have length L1 = L3 = L = 100 nm and the hole region has length L2 = 2L = 200 nm. We show a billiard model with
uniformly distributed transversal momenta. (f) We consider the same sample as in (e), but this time we consider a billiard
model with uniformly distributed emission angles. (g)–(h) The dependence of the peak width on the length scale of the sample
for E = 0.4 eV, for both the Kwant simulations and for a billiard model with uniformly distributed transversal momenta.
We plot ∆U0,left = U0,max − U0,left, ∆U0,right = U0,right − U0,max and ∆U0 = U0,right − U0,left, where U0,left and U0,right were
defined in the section on how we fit the data for a varying potential. (g) The results for the K-valley for an n-p junction with
L1 = L2 = L. For the billiard model, all three differences scale as L−α, with α close to 0.5. The Kwant simulations show a
larger peak width, with scaling behavior that is somewhat less clear. For the K′-valley (not shown), the scaling behavior of

the billiard results is much more asymmetric, with both ∆U0,left and ∆U0,right not scaling as L−1/2, but rather as L−0.32 and
L−0.64, respectively. However, the difference ∆U0 does show scaling with an exponent close to −0.5. (h) The results for the
K-valley for an n-p-n junction with length scales L1 = 1

2
L2 = L3 = L. The scaling exponent α is slightly higher than 0.5,

with ∆U0 scaling as L−0.58. For the K′-valley (not shown), the peak once again scales asymmetrically, though the asymmetry
is smaller than for the n-p junction. The total width ∆U0 scales as L−0.59 for the K′-valley. For all panels (a)–(h) we have
Wi = Wc = 50 nm.
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Numerical results for the higher order singularity
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Figure S7: (a)–(f) Evolution of the classical paths and the wavefunction computed with Kwant as we pass through the section
of the butterfly caustic in the K′-valley. We consider a sample with Wi = 7.5 nm, L1 = 100 nm and E = 0.6 eV. For this
energy, the coefficient a4,K′ vanishes at U0 = 1.069 eV. The potentials U0 are equal to (a) 1.07 eV, (b) 1.10 eV, (c) 1.14 eV,
(d) 1.16 eV, (e) 1.18 eV, (f) 1.20 eV. Increasing the potential, we see that the side at which the interference pattern is visible
changes from left to right and that we pass through a sharper focus. (g) Evolution of the transmission for the K-valley as a
function of potential strength as we pass through the butterfly caustic by changing the electron energy. We consider a sample
with Wi = 50 nm, L1 = 100 nm and L2 = 140 nm. The darker (smooth) lines correspond to the results of the billiard model,
and the lighter (fuzzy) lines correspond to the result of the Kwant simulations. Computing the potential U0,hs,K for which a4,K
vanishes for a given energy and the position xhs,K of the butterfly singularity for this potential, we find that xhs,K = 140 nm and
U0,hs,K = 0.5 eV for E = 0.24 eV. This means that the classical trajectories for that energy and potential look approximately
like those shown in figure (a), although they are mirrored in a line parallel to the y-axis. When we increase the energy, the set
of classical trajectories at the point of maximal transmission looks like a mirrored version of figures (c), (d) and (e). In the
billiard model, the maximal transmission is slightly higher at E = 0.32 eV, but this is not observed in the Kwant data.
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Breaking of sublattice symmetry in the lead

(a) (b) (c)
Max

0
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Figure S8: (a)–(c), (f) Results of the Kwant simulations when we include a constant mass mlead in the lead. We plot the
density |Ψav,α|2, where we have averaged over sublattices and have summed over all lead modes for a given valley. All figures
are made using samples with the n-p junction at x = 0, with length scale L1 = 100 nm and potential strength U0 = 2E.
(a) Results for the K′-valley for E = 0.1 eV, mlead = 0.075 eV and Wi = 50 nm. There is only one mode in the lead and
the focus is tilted downward. (b) Results for the K′-valley for E = 0.4 eV, mlead = 0.375 eV, Wi = 40 nm. There are two
modes in the lead and the focus is tilted downward. (c) Results for mlead = −0.375 eV, with the other parameters the same
as in (b). We see that flipping the mass reflects the wavefunction in the x-axis. (f) Results for the K-valley for E = 0.1 eV,
mlead = 0.075 eV and Wi = 50 nm. Summing over the two modes in the lead, an upward tilting is visible, though the focus
is not very clear. (d)–(e) Continuum evaluation of the initial condition taken from the Kwant simulation, for the K′-valley.
The wavefunction at x = −L1 was extracted from Kwant and this wavefunction was subsequently evolved using the continuum
(Dirac) formulas from Ref. [29]. In panel (d) the parameters correspond to those in panel (a) of this figure. In panel (e) the
parameters correspond to those in panel (b) of this figure and Fig. 4(a) in the main text. One clearly sees that the tilting of
the main focus is reproduced by the continuum evaluation, showing that it comes from the symmmetry breaking in the initial
condition. However, since trigonal warping is not included into the continuum (Dirac) equations, the focus is located at x = L1

in this approach. The maximum of the color scale corresponds to (a) 0.0044, (b, c) 0.0041, (d) 0.0064, (e) 0.007.
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Kwant data
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Figure S9: (a) Size of the asymmetry ηb,x,K′−ηb,−L1,K′ as a function of position, computed according to the procedure outlined
in the section on data processing. As in Fig. S2, we observe a three-site periodicity. This plot was constructed for the K′-valley,
with E = 0.1 eV and mlead = 0.06 eV. (b) Size of the asymmetry ηb,out,K′ − ηb,in,K′ as a function of L2, for various masses
(in eV). Simulations for the K′-valley, with E = 0.1 eV. (c) Size of the asymmetry as a function of sample length L2, for
various energies (in eV). Data were taken for the K′-valley, with mlead = 0.6E. (d) Size of the asymmetry as a function of
L2, for positive and negative lead masses (in eV). Data for the K′-valley, with E = 0.1 eV. For all four samples U0 = 2E,
L1 = 100 nm and Wi = 50 nm. Panels (e)–(h) depict the results for the K-valley for the parameters used in panels (a)–(d).
(i)–(j) Fourier transform of the Kwant wavefunction at x = −L1. (i) When Wi = 50 nm and the electron energy E = 0.1 eV,
with mlead = 0.06 eV, the lead only accomodates one mode. Its Fourier transform shows a large asymmetry. (j) When the
energy E = 0.4 eV, with mlead = 0.375 eV and Wi = 40 nm, there are two modes in the lead. The second mode shows a
stronger asymmetry than the first one.
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Figure S10: Transmission through an n-p junction as a function of the potential strength U0 when there is a constant mass
mlead in the lead. (a) E = 0.2 eV, (b) E = 0.4 eV. For both cases mlead = 0.75E, L1 = L2 = 100 nm and Wi = Wc = 50 nm.
When we invert the signs of the lead masses, we obtain exactly the same figures.
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