189 research outputs found

    Modulation of host responses by oral commensal bacteria.

    Get PDF
    Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR) signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    JunB is essential for IL-23-dependent pathogenicity of Th17 cells

    Get PDF
    CD4+ T-helper cells producing interleukin-17 (IL-17), known as T-helper 17 (TH17) cells, comprise heterogeneous subsets that exhibit distinct pathogenicity. Although pathogenic and non-pathogenic TH17 subsets share a common RORγt-dependent TH17 transcriptional programme, transcriptional regulatory mechanisms specific to each of these subsets are mostly unknown. Here we show that the AP-1 transcription factor JunB is critical for TH17 pathogenicity. JunB, which is induced by IL-6, is essential for expression of RORγt and IL-23 receptor by facilitating DNA binding of BATF at the Rorc locus in IL-23-dependent pathogenic TH17 cells, but not in TGF-β1-dependent non-pathogenic TH17 cells. Junb-deficient T cells fail to induce TH17-mediated autoimmune encephalomyelitis and colitis. However, JunB deficiency does not affect the abundance of gut-resident non-pathogenic TH17 cells. The selective requirement of JunB for IL-23-dependent TH17 pathogenicity suggests that the JunB-dependent pathway may be a therapeutic target for autoimmune diseases

    A Pivotal Role of Vitamin B9 in the Maintenance of Regulatory T Cells In Vitro and In Vivo

    Get PDF
    Dietary factors regulate immunological function, but the underlying mechanisms remain elusive. Here we show that vitamin B9 is a survival factor for regulatory T (Treg) cells expressing high levels of vitamin B9 receptor (folate receptor 4). In vitamin B9-reduced condition in vitro, Treg cells could be differentiated from naïve T cells but failed to survive. The impaired survival of Treg cells was associated with decreased expression of anti-apoptotic Bcl2 and independent of IL-2. In vivo depletion of dietary vitamin B9 resulted in the reduction of Treg cells in the small intestine, a site for the absorption of dietary vitamin B9. These findings provide a new link between diet and the immune system, which could maintain the immunological homeostasis in the intestine

    Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer

    Get PDF
    Recent reports have suggested the involvement of gut microbiota in the progression of colorectal cancer (CRC). We utilized pyrosequencing based analysis of 16S rRNA genes to determine the overall structure of microbiota in patients with colorectal cancer and healthy controls; we investigated microbiota of the intestinal lumen, the cancerous tissue and matched noncancerous normal tissue. Moreover, we investigated the mucosa-adherent microbial composition using rectal swab samples because the structure of the tissue-adherent bacterial community is potentially altered following bowel cleansing. Our findings indicated that the microbial structure of the intestinal lumen and cancerous tissue differed significantly. Phylotypes that enhance energy harvest from diets or perform metabolic exchange with the host were more abundant in the lumen. There were more abundant Firmicutes and less abundant Bacteroidetes and Proteobacteria in lumen. The overall microbial structures of cancerous tissue and noncancerous tissue were similar; howerer the tumor microbiota exhibited lower diversity. The structures of the intestinal lumen microbiota and mucosa-adherent microbiota were different in CRC patients compared to matched microbiota in healthy individuals. Lactobacillales was enriched in cancerous tissue, whereas Faecalibacterium was reduced. In the mucosa-adherent microbiota, Bifidobacterium, Faecalibacterium, and Blautia were reduced in CRC patients, whereas Fusobacterium, Porphyromonas, Peptostreptococcus, and Mogibacterium were enriched. In the lumen, predominant phylotypes related to metabolic disorders or metabolic exchange with the host, Erysipelotrichaceae, Prevotellaceae, and Coriobacteriaceae were increased in cancer patients. Coupled with previous reports, these results suggest that the intestinal microbiota is associated with CRC risk and that intestinal lumen microflora potentially influence CRC risk via cometabolism or metabolic exchange with the host. However, mucosa-associated microbiota potentially affects CRC risk primarily through direct interaction with the host

    Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon

    Get PDF
    Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10−/−, Tlr2−/−, and Myd88−/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra−/− T cells. B. breve treatment of Tlr2−/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10−/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells

    Deficiency of Leishmania phosphoglycans influences the magnitude but does not affect the quality of secondary (memory) anti-Leishmania immunity

    Get PDF
    Despite inducing very low IFN-γ response and highly attenuated in vivo, infection of mice with phosphoglycan (PG) deficient Leishmania major (lpg2-) induces protection against virulent L. major challenge. Here, we show that mice infected with lpg2- L. major generate Leishmania-specific memory T cells. However, in vitro and in vivo proliferation, IL-10 and IFN-γ production by lpg2- induced memory cells were impaired in comparison to those induced by wild type (WT) parasites. Interestingly, TNF recall response was comparable to WT infected mice. Despite the impaired proliferation and IFN-γ response, lpg2- infected mice were protected against virulent L. major challenge and their T cells mediated efficient infection-induced immunity. In vivo depletion and neutralization studies with mAbs demonstrated that lpg2- L. major-induced resistance was strongly dependent on IFN-γ, but independent of TNF and CD8(+) T cells. Collectively, these data show that the effectiveness of secondary anti-Leishmania immunity depends on the quality (and not the magnitude) of IFN-γ response. These observations provide further support for consideration of lpg2- L. major as a live-attenuated candidate for leishmanization in humans since it protects strongly against virulent challenge, without inducing pathology in infected animals

    More stories on Th17 cells

    Get PDF
    For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. the Th1/Th2 paradigm implied the existence of two different, mutually regulated, CD4(+) T helper subsets: Th1 cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particularly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4(+) T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Th1 or Th2 cells. the Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Th1, Th2 and Th17 effector cells but there is also a dichotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-beta or TGF-beta plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.Crohn's and Colitis Foundation of AmericaNIHLa Jolla Inst Allergy & Immunol, La Jolla, CA 92037 USAUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilNIH: RO1 AI050265-06Web of Scienc
    • …
    corecore