11,054 research outputs found
Snowmelt Runoff Model in Japan
The preliminary Japanese snowmelt runoff model was modified so that all the input variables arc of the antecedent days and the inflow of the previous day is taken into account. A few LANDSAT images obtained in the past were effectively used to verify and modify the depletion curve induced from the snow water equivalent distribution at maximum stage and the accumulated degree days at one representative point selected in the basin. Together with the depletion curve, the relationship between the basin ide daily snowmelt amount and the air temperature at the point above are exhibited homograph form for the convenience of the model user. The runoff forecasting procedure is summarized
Numerical Study of Photo-Induced Dynamics in Double-Exchange Model
Photo-induced spin and charge dynamics in double-exchange model are
numerically studied. The Lanczos method and the density-matrix
renormalization-group method are applied to one-dimensional finite-size
clusters. By photon irradiation in a charge ordered (CO) insulator associated
with antiferromagnetic (AFM) correlation, both the CO and AFM correlations
collapse rapidly, and appearances of new peaks inside of an insulating gap are
observed in the optical spectra and the one-particle excitation spectra. Time
evolutions of the spin correlation and the in-gap state are correlated with
each other, and are governed by the transfer integral of conduction electrons.
Results are interpreted by the charge kink/anti-kink picture and their
effective motions which depend on the localized spin correlation. Pump-photon
density dependence of spin and charge dynamics are also studied. Roles of spin
degree of freedom are remarkable in a case of weak photon density. Implications
of the numerical results for the pump-probe experiments in perovskite
manganites are discussed.Comment: 16 pages, 16 figure
Spin and orbital excitation spectrum in the Kugel-Khomskii model
We discuss spin and orbital ordering in the twofold orbital degenerate
superexchange model in three dimensions relevant to perovskite transition metal
oxides. We focus on the particular point on the classical phase diagram where
orbital degeneracy is lifted by quantum effects exclusively. Dispersion and
damping of the spin and orbital excitations are calculated at this point taking
into account their mutual interaction. Interaction corrections to the
mean-field order parameters are found to be small. We conclude that
quasi-one-dimensional Neel spin order accompanied by the uniform
d_{3z^2-r^2}-type orbital ordering is stable against quantum fluctuations.Comment: 4 pages with 3 PS figures, 1 table, RevTeX, accepted to Phys. Rev. B.
Rapid Communicatio
Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach
Astrophysical neutrinos are expected to be produced in the interactions of
ultra-high energy cosmic-rays with surrounding photons. The fluxes of the
astrophysical neutrinos are highly dependent on the characteristics of the
cosmic-ray sources, such as their cosmological distributions. We study possible
constraints on the properties of cosmic-ray sources in a model-independent way
using experimentally obtained diffuse neutrino flux above 100 PeV. The
semi-analytic formula is derived to estimate the cosmogenic neutrino fluxes as
functions of source evolution parameter and source extension in redshift. The
obtained formula converts the upper-limits on the neutrino fluxes into the
constraints on the cosmic-ray sources. It is found that the recently obtained
upper-limit on the cosmogenic neutrinos by IceCube constrains the scenarios
with strongly evolving ultra-high energy cosmic-ray sources, and the future
limits from an 1 km^3 scale detector are able to further constrain the
ultra-high energy cosmic-rays sources with evolutions comparable to the cosmic
star formation rate.Comment: 9 pages, 3 figures and 1 table. Accepted by Phys. Rev.
Theory of Orbital Ordering, Fluctuation and Resonant X-ray Scattering in Manganites
A theory of resonant x-ray scattering in perovskite manganites is developed
by applying the group theory to the correlation functions of the pseudospin
operators for the orbital degree of freedom. It is shown that static and
dynamical informations of the orbital state are directly obtained from the
elastic, diffuse and inelastic scatterings due to the tensor character of the
scattering factor. We propose that the interaction and its anisotropy between
orbitals are directly identified by the intensity contour of the diffuse
scattering in the momentum space.Comment: 4 pages, 1 figur
Prospects of Measuring General Higgs Couplings at e^+e^- Linear Colliders
We examine how accurately the general HZV couplings, with V=Z,gamma, may be
determined by studying e^+e^- --> Hff-bar processes at future e^+e^- linear
colliders. By using the optimal-observable method, which makes use of all
available experimental information, we find out which combinations of the
various HZV coupling terms may be constrained most efficiently with high
luminosity. We also assess the benefits of measuring the tau-lepton helicities,
identifying the bottom-hadron charges, polarizing the electron beam and running
at two different collider energies. The HZZ couplings are generally found to be
well constrained, even without these options, while the HZ-gamma couplings are
not. The constraints on the latter may be significantly improved by beam
polarization.Comment: 28 pages (LaTeX), 5 figures (axodraw and eps
Robustness of force and stress inference in an epithelial tissue
During morphogenesis, the shape of a tissue emerges from collective cellular
behaviors, which are in part regulated by mechanical and biochemical
interactions between cells. Quantification of force and stress is therefore
necessary to analyze the mechanisms controlling tissue morphogenesis. Recently,
a mechanical measurement method based on force inference from cell shapes and
connectivity has been developed. It is non-invasive, and can provide space-time
maps of force and stress within an epithelial tissue, up to prefactors. We
previously performed a comparative study of three force-inference methods,
which differ in their approach of treating indefiniteness in an inverse problem
between cell shapes and forces. In the present study, to further validate and
compare the three force inference methods, we tested their robustness by
measuring temporal fluctuation of estimated forces. Quantitative data of
cell-level dynamics in a developing tissue suggests that variation of forces
and stress will remain small within a short period of time (minutes).
Here, we showed that cell-junction tensions and global stress inferred by the
Bayesian force inference method varied less with time than those inferred by
the method that estimates only tension. In contrast, the amplitude of temporal
fluctuations of estimated cell pressures differs less between different
methods. Altogether, the present study strengthens the validity and robustness
of the Bayesian force-inference method.Comment: 4 pages, 4 figure
Strings in five-dimensional anti-de Sitter space with a symmetry
The equation of motion of an extended object in spacetime reduces to an
ordinary differential equation in the presence of symmetry. By properly
defining of the symmetry with notion of cohomogeneity, we discuss the method
for classifying all these extended objects. We carry out the classification for
the strings in the five-dimensional anti-de Sitter space by the effective use
of the local isomorphism between \SO(4,2) and \SU(2,2). We present a
general method for solving the trajectory of the Nambu-Goto string and apply to
a case obtained by the classification, thereby find a new solution which has
properties unique to odd-dimensional anti-de Sitter spaces. The geometry of the
solution is analized and found to be a timelike helicoid-like surface
Topology Change of Coalescing Black Holes on Eguchi-Hanson Space
We construct multi-black hole solutions in the five-dimensional
Einstein-Maxwell theory with a positive cosmological constant on the
Eguchi-Hanson space, which is an asymptotically locally Euclidean space. The
solutions describe the physical process such that two black holes with the
topology of S^3 coalesce into a single black hole with the topology of the lens
space L(2;1)=S^3/Z_2. We discuss how the area of the single black hole after
the coalescence depends on the topology of the horizon.Comment: 10 pages, Some comments are added. to be published as a letter in
Classical and Quantum Gravit
- …
