Photo-induced spin and charge dynamics in double-exchange model are
numerically studied. The Lanczos method and the density-matrix
renormalization-group method are applied to one-dimensional finite-size
clusters. By photon irradiation in a charge ordered (CO) insulator associated
with antiferromagnetic (AFM) correlation, both the CO and AFM correlations
collapse rapidly, and appearances of new peaks inside of an insulating gap are
observed in the optical spectra and the one-particle excitation spectra. Time
evolutions of the spin correlation and the in-gap state are correlated with
each other, and are governed by the transfer integral of conduction electrons.
Results are interpreted by the charge kink/anti-kink picture and their
effective motions which depend on the localized spin correlation. Pump-photon
density dependence of spin and charge dynamics are also studied. Roles of spin
degree of freedom are remarkable in a case of weak photon density. Implications
of the numerical results for the pump-probe experiments in perovskite
manganites are discussed.Comment: 16 pages, 16 figure