26,946 research outputs found

    The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement

    Get PDF
    Lysosomotropic amines, such as ammonium chloride, are known to protect cells from the cytotoxic effects of diphtheria toxin. These drugs are believed to inhibit the transport of the toxin from a receptor at the cell exterior into the cytoplasm where a fragment of the toxin arrests protein synthesis. We studied the effects of lysosomotropic agents on the cytotoxic process to better understand how the toxin enters the cytoplasm. The cytotoxic effects of diphtheria toxin were not inhibited by antitoxin when cells were preincubated at 37 degrees C with toxin and ammonium chloride, exposed to antitoxin at 4 degrees C, washed to relieve the ammonium chloride inhibition, and finally warmed to 37 degrees C. The antigenic determinants of the toxin were, therefore, either altered or sheltered. It is likely that the combination of ammonium chloride and a low temperature trapped the toxin in an intracellular vesicle from which the toxin could proceed to the cytoplasm. Because lysosomotropic amines raise the pH within acidic intracellular vesicles, such as lysosomes, they could trap the toxin within such a vesicle if an acidic environment were necessary for the toxin to penetrate into the cytoplasm. We simulated acidic conditions which the toxin might encounter by exposing cells with toxin bound to their surface to acidic medium. We then measured the effects of lysosomotropic amines on the activity of the toxin to see if the acidic environment substituted for the function normally inhibited by the drugs. The drugs no longer protected the cells. This suggests that exposing the toxin to an acidic environment, such as that found within lysosomes, is an important step in the penetration of diphtheria toxin into the cytoplasm

    Condensation, Partial Melting and Evaporation Processes Influence the Bulk Compositions of Spinel-Cored Spherules in the CO3.1 Chondrite Miller Range 90019

    Get PDF
    Here we focus on spinel-cored spherule calcium-aluminum rich inclusions (CAI), dominantly ~75-80 microns in diameter in the CO3.1 chondrite Miller Range 90019, which make up ~ 12 % of the fine-grained CAIs in one thin section. Their mineralogical content ranges from rare grossite- and hibonite-bearing varieties, through perovskite-melilitebearing, to fassaite-bearing and finally anorthitebearing. Non-spherical CAIs have been divided into 4 other groups, defined based on mineralogical abundances. We also characterized a group of AOAs from this sample. No glass has been recognized in any inclusions. Some relatively evolved members (anorthite-, spinel- + fassaite-bearing) among the spherules are found engulfed in AOAs. We characterized the bulk compositions of ~145 CAIs and AOAs in this meteorite, derived from EDS-x-ray mapping of the inclusions. We determined bulk compositions both with and without Wark-Lovering rims (when present), which are largely composed of diopside forsterite. The balance of the inclusions appear to have not been melted or partially melted, but rather they have textures that indicate they are condensates, often modified by extensive reaction with nebular gases. This presents the opportunity to examine effects on the bulk compositions of spherules resulting potentially from melting plus evaporation. Other aspects of this suite of refractory inclusions have been discussed in these abstracts. Oxygen isotope variations in one spherule were presented in [4]. The latter study showed a complex history of reaction with nebular gases possessing a variety of Oisotope compositions. Additional O isotopic studies of inclusions in this work are included in Mane et al

    Size-Change Abstraction and Max-Plus Automata

    Get PDF
    Max-plus automata (over ℕ ∪ − ∞) are finite devices that map input words to non-negative integers or − ∞. In this paper we present (a) an algorithm allowing to compute the asymptotic behaviour of max-plus automata, and (b) an application of this technique to the evaluation of the computational time complexity of programs

    Superfluid Motion of Light

    Full text link
    Superfluidity, the ability of a fluid to move without dissipation, is one of the most spectacular manifestations of the quantum nature of matter. We explore here the possibility of superfluid motion of light. Controlling the speed of a light packet with respect to a defect, we demonstrate the presence of superfluidity and, above a critical velocity, its breakdown through the onset of a dissipative phase. We describe a possible experimental realization based on the transverse motion through an array of waveguides. These results open new perspectives in transport optimization.Comment: 4 pages, 3 figure

    Spinful Composite Fermions in a Negative Effective Field

    Full text link
    In this paper we study fractional quantum Hall composite fermion wavefunctions at filling fractions \nu = 2/3, 3/5, and 4/7. At each of these filling fractions, there are several possible wavefunctions with different spin polarizations, depending on how many spin-up or spin-down composite fermion Landau levels are occupied. We calculate the energy of the possible composite fermion wavefunctions and we predict transitions between ground states of different spin polarizations as the ratio of Zeeman energy to Coulomb energy is varied. Previously, several experiments have observed such transitions between states of differing spin polarization and we make direct comparison of our predictions to these experiments. For more detailed comparison between theory and experiment, we also include finite-thickness effects in our calculations. We find reasonable qualitative agreement between the experiments and composite fermion theory. Finally, we consider composite fermion states at filling factors \nu = 2+2/3, 2+3/5, and 2+4/7. The latter two cases we predict to be spin polarized even at zero Zeeman energy.Comment: 17 pages, 5 figures, 4 tables. (revision: incorporated referee suggestions, note added, updated references

    Gz, a guanine nucleotide-binding protein with unique biochemical properties

    Get PDF
    Cloning of a complementary DNA (cDNA) for Gz alpha, a newly appreciated member of the family of guanine nucleotide-binding regulatory proteins (G proteins), has allowed preparation of specific antisera to identify the protein in tissues and to assay it during purification from bovine brain. Additionally, expression of the cDNA in Escherichia coli has resulted in the production and purification of the recombinant protein. Purification of Gz from bovine brain is tedious, and only small quantities of protein have been obtained. The protein copurifies with the beta gamma subunit complex common to other G proteins; another 26- kDa GTP-binding protein is also present in these preparations. The purified protein could not serve as a substrate for NAD-dependent ADP- ribosylation catalyzed by either pertussis toxin or cholera toxin. Purification of recombinant Gz alpha (rGz alpha) from E. coli is simple, and quantities of homogeneous protein sufficient for biochemical analysis are obtained. Purified rGz alpha has several properties that distinguish it from other G protein alpha subunit polypeptides. These include a very slow rate of guanine nucleotide exchange (k = 0.02 min^-1), which is reduced greater than 20-fold in the presence of mM concentrations of Mg2+. In addition, the rate of the intrinsic GTPase activity of Gz alpha is extremely slow. The hydrolysis rate (kcat) for rGz alpha at 30 degrees C is 0.05 min^-1, or 200-fold slower than that determined for other G protein alpha subunits. rGz alpha can interact with bovine brain beta gamma but does not serve as a substrate for ADP-ribosylation catalyzed by either pertussis toxin or cholera toxin. These studies suggest that Gz may play a role in signal transduction pathways that are mechanistically distinct from those controlled by the other members of the G protein family

    Oxygen Isotopic Imaging of Refractory Inclusions from the Miller Range (MIL) 090019 CO3 Chondrite: A Perovskite Perspective

    Get PDF
    Calcium-Aluminum-rich Inclusions (CAIs) in primitive meteorites are the first solids to condense in the Solar System. The oxygen isotopic compositions recorded in various mineral components of CAIs provide clues about their origins and post-formation histories, recording processes such as condensation, melting, nebular alteration, and fluidrock reactions on the parent body. MIL 090019 is similar to some rare carbonaceous chondrites such as Acfer 094, DOM 08004/6 and ALH 77303 that contain high abundances of a variety of refractory inclusions. This provides an opportunity to study the oxygen isotopic record of different types of refractory inclusions within the same meteorite. We analyzed CAIs specifically targeting primary minerals that are direct nebular condensates, such as corundum and perovskite, with the goal of gaining insights into the O isotopic composition of the nebular gas(es) from which these CAIs condensed. As MIL 090019 is a classified as CO3.1, it shows some signs of thermal metamorphism, compared to the more primitive CO3 meteorites (e.g., DOM 08004/06). A second goal of this study is to search for evidence of nebular processes in phases such as perovskite and melilite that are susceptible to parent body alteration to varying degrees. We analyzed the oxygen isotopic compositions of various CAIs from the MIL 090019 CO3 carbonaceous chondrite by ion imaging using the NanoSIMS 50L (Nano Secondary Ion Mass Spectrometer) at JSC following methods described in. An advantage of ion imaging over traditional spot analyses is that it provides spatial context to the oxygen isotopic data. This work builds on previously reported oxygen isotopic composition of two other CAIs (CAI-44 and CAI-E2) from the same meteorite thin section

    Entanglement of macroscopically distinct states of light

    Full text link
    Schr\"odinger's famous Gedankenexperiment has inspired multiple generations of physicists to think about apparent paradoxes that arise when the logic of quantum physics is applied to macroscopic objects. The development of quantum technologies enabled us to produce physical analogues of Schr\"odinger's cats, such as superpositions of macroscopically distinct states as well as entangled states of microscopic and macroscopic entities. Here we take one step further and prepare an optical state which, in Schr\"odinger's language, is equivalent to a superposition of two cats, one of which is dead and the other alive, but it is not known in which state each individual cat is. Specifically, the alive and dead states are, respectively, the displaced single photon and displaced vacuum (coherent state), with the magnitude of displacement being on a scale of 10810^8 photons. These two states have significantly different photon statistics and are therefore macroscopically distinguishable

    Distinct forms of the ß subunit of GTP-binding regulatory proteins identified by molecular cloning

    Get PDF
    Two distinct β subunits of guanine nucleotide-binding regulatory proteins have been identified by cDNA cloning and are referred to as β 1 and β 2 subunits. The bovine transducin β subunit (β 1) has been cloned previously. We have now isolated and analyzed cDNA clones that encode the β 2 subunit from bovine adrenal, bovine brain, and a human myeloid leukemia cell line, HL-60. The 340-residue Mr 37,329 β 2 protein is 90% identical with β 1 in predicted amino acid sequence, and it is also organized as a series of repetitive homologous segments. The major mRNA that encodes the bovine β 2 subunit is 1.7 kilobases in length. It is expreβed at lower levels than β 1 subunit mRNA in all tiβues examined. The β 1 and β 2 meβages are expreβed in cloned human cell lines. Hybridization of cDNA probes to bovine DNA showed that β 1 and β 2 are encoded by separate genes. The amino acid sequences for the bovine and human β 2 subunit are identical, as are the amino acid sequences for the bovine and human β 1 subunit. This evolutionary conservation suggests that the two β subunits have different roles in the signal transduction process

    A quantum Mermin--Wagner theorem for quantum rotators on two--dimensional graphs

    Full text link
    This is the first of a series of papers considering symmetry properties of quantum systems over 2D graphs or manifolds, with continuous spins, in the spirit of the Mermin--Wagner theorem. In the model considered here (quantum rotators) the phase space of a single spin is a d−d-dimensional torus, and spins (or particles) are attached to sites of a graph satisfying a special bi-dimensionality property. The kinetic energy part of the Hamiltonian is minus a half of the Laplace operator. We assume that the interaction potential is C2^2-smooth and invariant under the action of a connected Lie group {\ttG}. A part of our approach is to give a definition (and a construction) of a class of infinite-volume Gibbs states for the systems under consideration (the class \fG). This class contains the so-called limit Gibbs states, with or without boundary conditions. We use ideas and techniques originated from various past papers, in combination with the Feynman--Kac representation, to prove that any state lying in the class \fG (defined in the text) is {\ttG}-invariant. An example is given where the interaction potential is singular and there exists a Gibbs state which is not {\ttG}-invariant. In the next paper under the same title we establish a similar result for a bosonic model where particles can jump from a vertex of the graph to one of its neighbors (a generalized Hubbard model).Comment: 27 page
    • …
    corecore