110 research outputs found

    Transforming aquatic agricultural systems towards gender equality: a five country review

    Get PDF
    Aquatic agricultural systems (AAS) are systems in which the annual production dynamics of freshwater and/or coastal ecosystems contribute significantly to total household income. Improving the livelihood security and wellbeing of the estimated 250 million poor people dependent on AAS in Bangladesh, Cambodia, the Philippines, the Solomon Islands and Zambia is the goal of the Worldfish Center-led Consortium Research Program (CRP), “Harnessing the development potential of aquatic agricultural systems for development.” One component expected to contribute to sustainably achieving this goal is enhancing the gender and wider social equity of the social, economic and political systems within which the AAS function. The CRP’s focus on social equity, and particularly gender equity, responds to the limited progress to date in enhancing the inclusiveness of development outcomes through interventions that offer improved availability of resources and technologies without addressing the wider social constraints that marginalized populations face in making use of them. The CRP aims to both offer improved availability and address the wider social constraints in order to determine whether a multi-level approach that engages with individuals, households and communities, as well as the wider social, economic and political contexts in which they function, is more successful in extending development’s benefits to women and other excluded groups. Designing the research in development initiatives to test this hypothesis requires a solid understanding of each CRP country’s social, cultural and economic contexts and of the variations across them. This paper provides an initial input into developing this knowledge, based on a review of literature on agriculture, aquaculture and gender relations within the five focal countries. Before delving into the findings of the literature review, the paper first justifies the expectation that successfully achieving lasting wellbeing improvements for poor women and men dependent on AAS rests in part on advances in gender equity, and in light of this justification, presents the AAS CRP’s conceptual frame

    Angular redistribution of near-infrared emission from quantum dots in 3D photonic crystals

    Get PDF
    We study the angle-resolved spontaneous emission of near-infrared light sources in 3D photonic crystals over a wavelength range from 1200 to 1550 nm. To this end PbSe quantum dots are used as light sources inside titania inverse opal photonic crystals. Strong deviations from the Lambertian emission profile are observed. An attenuation of 60 % is observed in the angle dependent radiant flux emitted from the samples due to photonic stop bands. At angles that correspond to the edges of the stop band the emitted flux is increased by up to 34 %. This increase is explained by the redistribution of Bragg-diffracted light over the available escape angles. The results are quantitatively explained by an expanded escape-function model. This model is based on diffusion theory and adapted to photonic crystals using band structure calculations. Our results are the first angular redistributions and escape functions measured at near-infrared, including telecom, wavelengths. In addition, this is the first time for this model to be applied to describe emission from samples that are optically thick for the excitation light and relatively thin for the photoluminesence light.Comment: 24 pages, 8 figures (current format = single column, double spaced

    Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis

    Get PDF
    This study reports the first observations indicating the spatiotemporal relationships among genetic and physiological aspects of ripening in the berry of Vitis vinifera. At the onset of ripening in the red flesh variety Alicante Bouschet, colour development began in the flesh at the stylar end of the fruit and progressed toward the pedicel end flesh and into the skin. Tissue solute potential and cell turgor also decreased first in the flesh. The decrease in flesh solute potential was due to accumulation of sugars, glucose and fructose, an accumulation that is integral to ripening. Expression of the anthocyanin biosynthesis-related genes VvMybA and VvUFGT was linearly related to the decrease in solute potential. Expression of VvMybA, and to a lesser extent VvUFGT, was correspondingly low in green tissue, higher in the red, stylar end flesh of berries beginning to ripen, and greatest in red berries. In contrast, expression of the abscisic acid biosynthesis-related genes VvNCED1 and VvNCED2 was not correlated with the other spatiotemporal aspects of the onset of ripening. These results, together with earlier work showing that sugar accumulation and acid loss also begin in the stylar flesh in other varieties, indicate that ripening in the grape berry originates in the stylar end flesh

    Non-Lytic, Actin-Based Exit of Intracellular Parasites from C. elegans Intestinal Cells

    Get PDF
    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo

    C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12

    Get PDF
    The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to efficiently utilize the C1 compounds methanol and formaldehyde as auxiliary substrate. The hps and phi genes of Bacillus brevis, encoding two key steps of the ribulose monophosphate (RuMP) pathway, were introduced to construct a pathway for the metabolism of the toxic methanol oxidation intermediate formaldehyde. This approach resulted in a remarkably increased biomass yield on the primary substrate glucose when cultured in C-limited chemostats fed with a mixture of glucose and formaldehyde. With increasing relative formaldehyde feed concentrations, the biomass yield increased from 35% (C-mol biomass/C-mol glucose) without formaldehyde to 91% at 60% relative formaldehyde concentration. The RuMP-pathway expressing strain was also capable of growing to higher relative formaldehyde concentrations than the control strain. The presence of an endogenous methanol oxidizing enzyme activity in P. putida S12 allowed the replacement of formaldehyde with the less toxic methanol, resulting in an 84% (C-mol/C-mol) biomass yield. Thus, by introducing two enzymes of the RuMP pathway, co-utilization of the cheap and renewable substrate methanol was achieved, making an important contribution to the efficient use of P. putida S12 as a bioconversion platform host

    A Modified RMCE-Compatible Rosa26 Locus for the Expression of Transgenes from Exogenous Promoters

    Get PDF
    Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice

    Feasibility studies for the measurement of time-like proton electromagnetic form factors from p¯ p→ μ+μ- at P ¯ ANDA at FAIR

    Get PDF
    This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, | GE| and | GM| , using the p¯ p→ μ+μ- reaction at P ¯ ANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at P ¯ ANDA , using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is p¯ p→ π+π-, due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distributions of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented

    Observation of Ξ\Xi^{-} Hyperon Transverse Polarization in ψ(3686)ΞΞˉ+\psi(3686)\rightarrow\Xi^{-}\bar\Xi^{+}

    Full text link
    Using a sample of (448.1 ± 2.9)(448.1~\pm~2.9) ×106\times 10^{6} ψ(3686)\psi(3686) decays collected with the BESIII detector at BEPCII, we report an observation of Ξ\Xi^{-} transverse polarization with a significance of 7.3σ7.3 \sigma in the decay ψ(3686)ΞΞˉ+\psi(3686)\rightarrow\Xi^{-}\bar\Xi^{+} (ΞπΛ\Xi^{-}\rightarrow\pi^{-}\Lambda, Ξˉ+π+Λˉ\bar\Xi^{+}\rightarrow\pi^{+}\bar\Lambda, Λpπ\Lambda\to p\pi^{-}, Λˉpˉπ+\bar\Lambda\to\bar{p}\pi^{+}). The relative phase of the electric and magnetic form factors is determined to be ΔΦ=(0.667±0.111±0.058)\Delta\Phi = (0.667 \pm 0.111 \pm 0.058) rad. This is the first measurement of the relative phase for a ψ(3686)\psi(3686) decay into a pair of ΞΞˉ+\Xi^{-}\bar\Xi^{+} hyperons. The Ξ\Xi^{-} decay parameters (αΞ\alpha_{\Xi^{-}}, ϕΞ\phi_{\Xi^-}) and their conjugates (αΞˉ+\alpha_{\bar\Xi^{+}}, ϕΞˉ+\phi_{\bar{\Xi}^{+}}), the angular-distribution parameter αψ\alpha_{\psi}, and the strong-phase difference δpδs\delta_{p}-\delta_{s} for Λ\Lambda-π\pi^- scattering are measured to be consistent with previous BESIII results.Comment: 8 pages, 3 figures, consistent with paper published in Phys. Rev. D (Letter) 106, L091101 (2022

    Evidence for ηc\eta_c(2S)\to\pipieta decay

    Full text link
    The decay \eta_c(2S)\to\pipieta is searched for through the radiative transition ψ(3686)γηc(2S)\psi(3686) \to\gamma\eta_c(2S) using 448 million ψ\psi(3686) events accumulated at the BESIII detector. The first evidence of ηc(2S)π+πη\eta_c(2S)\to\pi^+\pi^-\eta is found with a statistical significance of 3.5σ\sigma. The product of the branching fractions of ψ(3686)γηc(2S)\psi(3686)\to\gamma\eta_c(2S) and \eta_c(2S)\to\pipieta is measured to be Br(\psi(3686)\to\gamma\eta_c(2S))\times Br(\eta_c(2S)\to\pipieta)=(2.97\pm0.81\pm0.26)\times10^{-6}, where the first uncertainty is statistical and the second one is systematic. The branching fraction of the decay \eta_c(2S)\to\pipieta is determined to be Br(\eta_c(2S)\to\pipieta)=(42.4\pm11.6\pm3.8\pm30.3)\times10^{-4}, where the third uncertainty is transferred from the uncertainty of the branching fraction of ψ(3686)γηc(2S)\psi(3686)\to\gamma\eta_c(2S)
    corecore