771 research outputs found

    Plasmodium yoelii infection of BALB/c mice results in expansion rather than induction of CD4+ Foxp3+ regulatory T cells

    Get PDF
    Recently, we demonstrated elevated numbers of CD4(+) Foxp3(+) regulatory T (Treg) cells in Plasmodium yoelii‐infected mice contributing to the regulation of anti‐malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus‐derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3(+) Treg cells expressing neuropilin‐1 (Nrp‐1) decreased at early time‐points during P. yoelii infection, whereas percentages of Helios(+) Foxp3(+) Treg cells remained unchanged. Both Foxp3(+) Nrp‐1(+) and Foxp3(+) Nrp‐1(−) Treg cells from P. yoelii‐infected mice exhibited a similar T‐cell receptor Vβ chain usage and methylation pattern in the Treg‐specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3(−) T cells adoptively transferred to P. yoelii‐infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3(+) Treg cells

    Developing a model of upland swamp structure, function and evolution for biodiversity conservation and rehabilitation: The case of threatened Temperate Highland Peat Swamps on Sandstone (THPSS)

    Get PDF
    Temperate highland peat swamps on sandstone (THPSS) (called upland swamps) are a form of topogenous mire which occur on the plateau areas of eastern Australia. These systems are well recognised for their ecological value, under several State and Federal policies. However, our understanding of their structure, function and evolution remains limited. This study examines the sedimentology, age structure, hydrological function and stygofauna diversity of 19 valley-bottom swamps in the Blue Mountains and Southern Highlands of NSW to produce a regional model of THPSS geo-ecological function. This regional model provides a template for environmental health assessment and rehabilitation of these systems, and to inform State and Federal policy making on the conservation status of these systems. © 2014 University of Melbourn

    Improving Models for Student Retention and Graduation using Markov Chains

    Full text link
    Graduation rates are a key measure of the long-term efficacy of academic interventions. However, challenges to using traditional estimates of graduation rates for underrepresented students include inherently small sample sizes and high data requirements. Here, we show that a Markov model increases confidence and reduces biases in estimated graduation rates for underrepresented minority and first-generation students. We use a Learning Assistant program to demonstrate the Markov model's strength for assessing program efficacy. We find that Learning Assistants in gateway science courses are associated with a 9% increase in the six-year graduation rate. These gains are larger for underrepresented minority (21%) and first-generation students (18%). Our results indicate that Learning Assistants can improve overall graduation rates and address inequalities in graduation rates for underrepresented students

    Development of HPD Clusters for MAGIC-II

    Full text link
    MAGIC-II is the second imaging atmospheric Cherenkov telescope of the MAGIC observatory, which has recently been inaugurated on Canary island of La Palma. We are currently developing a new camera based on clusters of hybrid photon detectors (HPD) for the upgrade of MAGIC-II. The photon detectors feature a GaAsP photocathode and an avalanche diode as electron bombarded anodes with internal gain, and were supplied by Hamamatsu Photonics K.K. (R9792U-40). The HPD camera with high quantum efficiency will increase the MAGIC-II sensitivity and lower the energy threshold. The basic performance of the HPDs has been measured and a prototype of an HPD cluster has been developed to be mounted on MAGIC-II. Here we report on the status of the HPD cluster and the project of eventually using HPD clusters in the central area of the MAGIC-II camera.Comment: Contribution to the 31st ICRC, Lodz, Poland, July 200

    Study of Photoconductivity of PbSe Films

    Get PDF

    Autonomous multi-dimensional slicing for large-scale distributed systems

    Get PDF
    Slicing is a distributed systems primitive that allows to autonomously partition a large set of nodes based on node-local attributes. Slicing is decisive for automatically provisioning system resources for different services, based on their requirements or importance. One of the main limitations of existing slicing protocols is that only single dimension attributes are considered for partitioning. In practical settings, it is often necessary to consider best compromises for an ensemble of metrics. In this paper we propose an extension of the slicing primitive that allows multi-attribute distributed systems slicing. Our protocol employs a gossip-based approach that does not require centralized knowledge and allows self-organization. It leverages the notion of domination between nodes, forming a partial order between multi-dimensional points, in a similar way to SkyLine queries for databases. We evaluate and demonstrate the interest of our approach using large-scale simulations.This work received support from the Portuguese Foundation for Science and Technology under grant SFRH/BD/71476/2010

    Longitudinal fluorescence in situ hybridization reveals cytogenetic evolution in myeloma relapsing after autologous transplantation

    Get PDF
    To investigate cytogenetic evolution after upfront autologous stem cell transplantation for newly diagnosed myeloma we retrospectively analyzed fluorescence in situ hybridization results of 128 patients with paired bone marrow samples from the time of primary diagnosis and at relapse. High-risk cytogenetic abnormalities (deletion 17p and/or gain 1q21) occurred more frequently after relapse (odds ratio: 6.33; 95% confidence interval: 1.86–33.42; P<0.001). No significant changes were observed for defined IGH translocations [t(4;14); t(11;14); t(14;16)] or hyperdiploid karyotypes between primary diagnosis and relapse. IGH translocations with unknown partners occurred more frequently at relapse. New deletion 17p and/or gain 1q21 were associated with cytogenetic heterogeneity, since some de novo lesions with different copy numbers were present only in subclones. No distinct baseline characteristics were associated with the occurrence of new high-risk cytogenetic abnormalities after progression. Patients who relapsed after novel agent-based induction therapy had an increased risk of developing high-risk aberrations (odds ratio 10.82; 95% confidence interval: 1.65–127.66; P=0.03) compared to those who were treated with conventional chemotherapy. Survival analysis revealed dismal outcomes regardless of whether high-risk aberrations were present at baseline (hazard ratio, 3.53; 95% confidence interval: 1.53–8.14; P=0.003) or developed at relapse only (hazard ratio, 3.06; 95% confidence interval: 1.09–8.59; P=0.03). Our results demonstrate cytogenetic evolution towards high-risk disease after autologous transplantation and underline the importance of repeated genetic testing in relapsed myeloma (EudraCT number of the HD4 trial: 2004-000944-26)
    corecore