1,361 research outputs found

    Characteristics of Reading Programs in Michigan Community and Junior Colleges

    Get PDF
    A study of the characteristics of reading programs offered to students in the thirty-three publicly supported community and junior colleges in the State of Michigan indicates that there are areas in which great strides have been made and other areas in which much work needs yet to be done

    The EvoDevoCI: A Concept Inventory for Gauging Students’ Understanding of Evolutionary Developmental Biology

    Get PDF
    The American Association for the Advancement of Science 2011 report Vision and Change in Undergraduate Biology Education encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary developmental biology, or “evo-devo.” To assist in efforts to improve evo-devo instruction among undergraduate biology majors, we designed a concept inventory (CI) for evolutionary developmental biology, the EvoDevoCI. The CI measures student understanding of six core evo-devo concepts using four scenarios and 11 multiple-choice items, all inspired by authentic scientific examples. Distracters were designed to represent the common conceptual difficulties students have with each evo-devo concept. The tool was validated by experts and administered at four institutions to 1191 students during preliminary (n = 652) and final (n = 539) field trials. We used student responses to evaluate the readability, difficulty, discriminability, validity, and reliability of the EvoDevoCI, which included items ranging in difficulty from 0.22–0.55 and in discriminability from 0.19–0.38. Such measures suggest the EvoDevoCI is an effective tool for assessing student understanding of evo-devo concepts and the prevalence of associated common conceptual difficulties among both novice and advanced undergraduate biology majors

    Homogeneity and Heterogeneity as Situational Properties: Producing – and Moving Beyond? – Race in Post-Genomic Science

    Get PDF
    In this article, we explore current thinking and practices around the logics of difference in gene–environment interaction research in the post-genomic era. We find that scientists conducting gene–environment interaction research continue to invoke well-worn notions of racial difference and diversity, but use them strategically to try to examine other kinds of etiologically significant differences among populations. Scientists do this by seeing populations not as inherently homogeneous or heterogeneous, but rather by actively working to produce homogeneity along some dimensions and heterogeneity along others in their study populations. Thus we argue that homogeneity and heterogeneity are situational properties – properties that scientists seek to achieve in their study populations, the available data, and other aspects of the research situation they are confronting, and then leverage to advance post-genomic science. Pointing to the situatedness of homogeneity and heterogeneity in gene–environment interaction research underscores the work that these properties do and the contingencies that shape decisions about research procedures. Through a focus on the situational production of homogeneity and heterogeneity more broadly, we find that gene–environment interaction research attempts to shift the logic of difference from solely racial terms as explanatory ends unto themselves, to racial and other dimensions of difference that may be important clues to the causes of complex diseases

    The EvoDevoCI: A Concept Inventory for Gauging Students’ Understanding of Evolutionary Developmental Biology

    Get PDF
    The American Association for the Advancement of Science 2011 report Vision and Change in Undergraduate Biology Education encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary developmental biology, or “evo-devo.” To assist in efforts to improve evo-devo instruction among undergraduate biology majors, we designed a concept inventory (CI) for evolutionary developmental biology, the EvoDevoCI. The CI measures student understanding of six core evo-devo concepts using four scenarios and 11 multiple-choice items, all inspired by authentic scientific examples. Distracters were designed to represent the common conceptual difficulties students have with each evo-devo concept. The tool was validated by experts and administered at four institutions to 1191 students during preliminary (n = 652) and final (n = 539) field trials. We used student responses to evaluate the readability, difficulty, discriminability, validity, and reliability of the EvoDevoCI, which included items ranging in difficulty from 0.22–0.55 and in discriminability from 0.19–0.38. Such measures suggest the EvoDevoCI is an effective tool for assessing student understanding of evo-devo concepts and the prevalence of associated common conceptual difficulties among both novice and advanced undergraduate biology majors

    Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Get PDF
    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology

    Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Get PDF
    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology

    Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    Get PDF
    In this study we used surveys of evo-devo experts to identify the core concepts of evo-devo and outline an underlying conceptual framework. We also use interviews and surveys of conceptual difficulties with these concepts. To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology
    • …
    corecore