885 research outputs found
An event-based architecture for solving constraint satisfaction problems
Constraint satisfaction problems (CSPs) are typically solved using
conventional von Neumann computing architectures. However, these architectures
do not reflect the distributed nature of many of these problems and are thus
ill-suited to solving them. In this paper we present a hybrid analog/digital
hardware architecture specifically designed to solve such problems. We cast
CSPs as networks of stereotyped multi-stable oscillatory elements that
communicate using digital pulses, or events. The oscillatory elements are
implemented using analog non-stochastic circuits. The non-repeating phase
relations among the oscillatory elements drive the exploration of the solution
space. We show that this hardware architecture can yield state-of-the-art
performance on a number of CSPs under reasonable assumptions on the
implementation. We present measurements from a prototype electronic chip to
demonstrate that a physical implementation of the proposed architecture is
robust to practical non-idealities and to validate the theory proposed.Comment: First two authors contributed equally to this wor
New insights into Bedouin culture : a study of three Bedouin descent groups in Northeast Egypt
The ethnographic study on which this thesis is based was carried on from September 2002 through August 2003 among three Bedouin descent groups in northeast Egypt and Sinai. Through a cognitive anthropological approach, reflexivity and hermeneutics, and the adoption of participant observation techniques, this thesis is a study of the culture of the Egyptian Bedouin. It aims at providing a better understanding and appreciation of the Bedouin and their culture. It confronts many negative stereotypes and misrepresentations about Bedouin culture and lifestyle. Also concerned with a critical epistemology, this thesis could be considered a statement advocating the cultural rights of the Bedouin. In general, this thesis celebrates the Bedouin organisation and utilisation of their distinctive culture.In the process of the study, various Bedouin cultural models and schemas are examined and analysed. Examples and comparisons with other cultures are provided wherever possible. The Bedouin construct their own cultural models as a means of negotiating their natural and socio-political environments. They make continuous adjustments in response to the demands of the surrounding natural environment and the socio-political conditions. The Bedouin show a remarkable ability to change and adapt. They can invoke multiple identities and change their model of behaviour according to various contexts. Adaptability becomes very important in the economic sphere. Despite many similarities between different Bedouin groups, each Bedouin group has its own 'local' or 'specific' cultural models, which make Bedouin culture highly diversified.The study reveals that the stereotypical images of Bedouin as drug smugglers and being 'ignorant' about matters of religion are erroneous. The Aiaida Sufi Bedouin, in particular, demonstrate moral values and Islamic beliefs based on piety and love. Their teachings and wisdom propagate understanding, respect and tolerance of 'others'; such values are highly required for bringing different cultures together. The findings of this study are related to many issues currently discussed worldwide such as modernity and change, Islam and the West, human rights and gender relations. They aim at enriching the ongoing debates on these issues by presenting them from a Bedouin perspective
Rhythmic inhibition allows neural networks to search for maximally consistent states
Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits
yet its computational role still remains elusive. We show that a model of
Gamma-band rhythmic inhibition allows networks of coupled cortical circuit
motifs to search for network configurations that best reconcile external inputs
with an internal consistency model encoded in the network connectivity. We show
that Hebbian plasticity allows the networks to learn the consistency model by
example. The search dynamics driven by rhythmic inhibition enable the described
networks to solve difficult constraint satisfaction problems without making
assumptions about the form of stochastic fluctuations in the network. We show
that the search dynamics are well approximated by a stochastic sampling
process. We use the described networks to reproduce perceptual multi-stability
phenomena with switching times that are a good match to experimental data and
show that they provide a general neural framework which can be used to model
other 'perceptual inference' phenomena
Accuracy Assessment, Comparative Performance, and Enhancement of Public Domain Digital Elevation Models (ASTER 30 m, SRTM 30 m, CARTOSAT 30 m, SRTM 90 m, MERIT 90 m, and TanDEM-X 90 m) Using DGPS
Publicly available Digital Elevation Models (DEM) derived from various space-based platforms (Satellite/Space Shuttle Endeavour) have had a tremendous impact on the quantification of landscape characteristics, and the related processes and products. The accuracy of elevation data from six major public domain satellite-derived Digital Elevation Models (a 30 m grid size—ASTER GDEM version 3 (Ast30), SRTM version 3 (Srt30), CartoDEM version V3R1 (Crt30)—and 90 m grid size—SRTM version 4.1 (Srt90), MERIT (MRT90), and TanDEM-X (TDX90)), as well as the improvement in accuracy achieved by applying a correction (linear fit) using Differential Global Positioning System (DGPS) estimates at Ground Control Points (GCPs) is examined in detail. The study area is a hard rock terrain that overall is flat-like with undulating and uneven surfaces (IIT (ISM) Campus and its environs) where the statistical analysis (corrected and uncorrected DEMs), correlation statistics and statistical tests (for elevation and slope), the impact of resampling methods, and the optimum number of GCPs for reduction of error in order to use it in further applications have been presented in detail. As the application of DGPS data at GCPs helps in the substantial reduction of bias by the removal of systematic error, it is recommended that DEMs may be corrected using DGPS before being used in any scientific studies
“Friends Give Meaning to Life:” Reframing Friendship for Individuals with Autism that Type to Communicate
We, two able-bodied authors and two authors with autism, use a disability studies framework to understand our experiences of friendship. Taken from a series of recorded conversations over the course of a year, this project describes the development, maintenance, and complications related to our experiences with friendship, including: reframing of friendships, respect for communication, facilitator roles and support, interdependence and reciprocity, and permanency in relationships
A novel cross-docking EOQ-based model to optimize a multi-item multi-supplier multi-retailer inventory management system
Nowadays, the retail industry accounts for a large share of the world’s economy. Cross-docking is one of the most effective and smart inventory management systems used by retail companies to respond to demands efficiently. In this study, the aim is to develop a novel cross-docking EOQ-based model for a retail company. By considering a two-stage inventory procurement process, a new multi-item, multi-supplier, multi-retailer EOQ model is developed to minimize the total inventory costs. In the first stage, the required items are received from suppliers and are held in a central warehouse. In the second stage, these items are delivered to several retail stores. The total inventory costs include four main parts, i.e., holding costs at the central warehouse, holding costs at the retail stores, fixed ordering costs from the suppliers, and fixed ordering costs from the central warehouse. The optimal inventory policy is obtained by analyzing extrema, and a numerical example is used to confirm the efficiency of the proposed model. Based on the obtained results, it is evident that the proposed model produces the optimal policy for the cross-docking system. Furthermore, the model enables managers to analyze the effects of key factors on the costs of the system. Based on the obtained results, the annual demand of each retailer, the ordering cost by the central warehouse, the ordering cost at each retail store, and the holding cost at each retail store have a direct impact on the optimal cost. Furthermore, it is not possible to describe the effects of the holding cost at the central warehouse on the optimal cost of the system generally
Uncovering and characterizing splice variants associated with survival in lung cancer patients
Splice variants have been shown to play an important role in tumor initiation and progression and can serve as novel cancer biomarkers. However, the clinical importance of individual splice variants and the mechanisms by which they can perturb cellular functions are still poorly understood. To address these issues, we developed an efficient and robust computational method to: (1) identify splice variants that are associated with patient survival in a statistically significant manner; and (2) predict rewired protein-protein interactions that may result from altered patterns of expression of such variants. We applied our method to the lung adenocarcinoma dataset from TCGA and identified splice variants that are significantly associated with patient survival and can alter protein-protein interactions. Among these variants, several are implicated in DNA repair through homologous recombination. To computationally validate our findings, we characterized the mutational signatures in patients, grouped by low and high expression of a splice variant associated with patient survival and involved in DNA repair. The results of the mutational signature analysis are in agreement with the molecular mechanism suggested by our method. To the best of our knowledge, this is the first attempt to build a computational approach to systematically identify splice variants associated with patient survival that can also generate experimentally testable, mechanistic hypotheses. Code for identifying survival-significant splice variants using the Null Empirically Estimated P-value method can be found at https://github.com/thecodingdoc/neep. Code for construction of Multi-Granularity Graphs to discover potential rewired protein interactions can be found at https://github.com/scwest/SINBAD
Melting of Major Glaciers in the Western Himalayas: Evidence of Climatic Changes from Long Term MSU Derived Tropospheric Temperature Trend (1979-2008)
Global warming or the increase of the surface and atmospheric temperatures of the Earth, is increasingly discernible in the polar, sub-polar and major land glacial areas. The Himalayan and Tibetan Plateau Glaciers, which are the largest glaciers outside of the Polar regions, are showing a large-scale decrease of snow cover and an extensive glacial retreat. These glaciers such as Siachen and Gangotri are a major water resource for Asia as they feed major rivers such as the Indus, Ganga and Brahmaputra. Due to scarcity of ground measuring stations, the long-term observations of atmospheric temperatures acquired from the Microwave Sounding Unit (MSU) since 1979–2008 is highly useful. The lower and middle tropospheric temperature trend based on 30 years of MSU data shows warming of the Northern Hemisphere’s midlatitude regions. The mean month-to-month warming (up to 0.048±0.026 K/year or 1.44 K over 30 years) of the mid troposphere (near surface over the high altitude Himalayas and Tibetan Plateau) is prominent and statistically significant at a 95% confidence interval. Though the mean annual warming trend over the Himalayas (0.016±0.005 K/year), and Tibetan Plateau (0.008±0.006 K/year) is positive, the month to month warming trend is higher (by 2–3 times, positive and significant) only over a period of six months (December to May). The factors responsible for the reversal of this trend from June to November are discussed here. The inequality in the magnitude of the warming trends of the troposphere between the western and eastern Himalayas and the IG (Indo-Gangetic) plains is attributed to the differences in increased aerosol loading (due to dust storms) over these regions. The monthly mean lowertropospheric MSU-derived temperature trend over the IG plains (dust sink region; up to 0.032±0.027 K/year) and dust source regions (Sahara desert, Middle East, Arabian region, Afghanistan-Iran-Pakistan and Thar Desert regions; up to 0.068±0.033 K/year) also shows a similar pattern of month-to-month oscillation and six months of enhanced and a statistically significant warming trend. The enhanced warming trend during the winter and pre-monsoon months (December–May) may accelerate glacial melt. The unequal distribution of the warming trend over the year is discussed in this study and is partially attributed to a number of controlling factors such as sunlight duration, CO2 trends over the region (2003–2008), water vapor and aerosol distribution
Snow Cover Variability and Trend Over the Hindu Kush Himalayan Region Using MODIS and SRTM Data
Snow cover changes have a direct bearing on the regional and global energy and water cycles and the change in the Earth\u27s climate conditions. We studied the relatively long-term (2000–2017) altitudinal spatiotemporal changes in the coverage of snow and glaciers in one of the world\u27s largest mountainous regions, the Hindu Kush Himalayan (HKH) region, including Tibet, using remote sensing data (5 km grid resolution) from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite. This dataset provided a unique opportunity to study zonal and hypsographic changes in the intra-annual (accumulating season and melting season) and interannual variations in snow and glacial cover over the HKH region. The zonal and altitudinal (hypsographic) analyses were carried out for the melting season and accumulating season. The altitude-wise linear trend analysis (Pearson\u27s) of snow cover, shown as a hypsographic curve, clearly indicates a major decline in snow cover (average of 5 % or more at 100 m interval aggregates) between 4000–4500 and 5500–6000 m altitudes, which is consistent with the median trend (Theil–Sen – TS) and the monotonic trend (Mann–Kendall – MK; statistics) analysis. This analysis also revealed the regions and altitudes where major and statistically significant increases (10 % to 30 %) or decreases (−10 % to −30 %) in snow cover are identified. The extrapolation of the altitude-wise linear trend shows that it may take between ∼ 74 and 7900 years, for 3001–6000 and 6000–7000 m altitude zones respectively, for mean snow cover to decline approximately 25 % in the HKH. More detailed analysis based on longer observational records and model simulations is warranted to better understand the underlying factors, processes, and feedbacks that affect the dynamic of snow cover in HKH. These preliminary results suggest a need for continued monitoring of this highly sensitive region to climate variability and change that depends on snow as a major source of freshwater for all human activities
- …