29 research outputs found

    Alu retrotransposition-mediated deletion

    Get PDF
    Alu repeats contribute to genomic instability in primates via insertional and recombinational mutagenesis. Here, we report an analysis of Alu element-induced genomic instability through a novel mechanism termed retrotransposition-mediated deletion, and assess its impact on the integrity of primate genomes. For human and chimpanzee genomes, we find evidence of 33 retrotransposition-mediated deletion events that have eliminated approximately 9000 nucleotides of genomic DNA. Our data suggest that, during the course of primate evolution, Alu retrotransposition may have contributed to over 3000 deletion events, eliminating approximately 900 kb of DNA in the process. Potential mechanisms for the creation of Alu retrotransposition-mediated deletions include L1 endonuclease-dependent retrotransposition, L1 endonuclease-independent retrotransposition, internal priming on DNA breaks, and promiscuous target primed reverse transcription. A comprehensive analysis of the collateral effects by Alu mobilization on all primate genomes will require sequenced genomes from representatives of the entire order. © 2005 Elsevier Ltd. All rights reserved

    Alu retrotransposition-mediated deletion,”

    Get PDF
    Alu repeats contribute to genomic instability in primates via insertional and recombinational mutagenesis. Here, we report an analysis of Alu elementinduced genomic instability through a novel mechanism termed retrotransposition-mediated deletion, and assess its impact on the integrity of primate genomes. For human and chimpanzee genomes, we find evidence of 33 retrotransposition-mediated deletion events that have eliminated approximately 9000 nucleotides of genomic DNA. Our data suggest that, during the course of primate evolution, Alu retrotransposition may have contributed to over 3000 deletion events, eliminating approximately 900 kb of DNA in the process. Potential mechanisms for the creation of Alu retrotransposition-mediated deletions include L1 endonuclease-dependent retrotransposition, L1 endonuclease-independent retrotransposition, internal priming on DNA breaks, and promiscuous target primed reverse transcription. A comprehensive analysis of the collateral effects by Alu mobilization on all primate genomes will require sequenced genomes from representatives of the entire order

    Changing Hydrozoan Bauplans by Silencing Hox-Like Genes

    Get PDF
    Regulatory genes of the Antp class have been a major factor for the invention and radiation of animal bauplans. One of the most diverse animal phyla are the Cnidaria, which are close to the root of metazoan life and which often appear in two distinct generations and a remarkable variety of body forms. Hox-like genes have been known to be involved in axial patterning in the Cnidaria and have been suspected to play roles in the genetic control of many of the observed bauplan changes. Unfortunately RNAi mediated gene silencing studies have not been satisfactory for marine invertebrate organisms thus far. No direct evidence supporting Hox-like gene induced bauplan changes in cnidarians have been documented as of yet. Herein, we report a protocol for RNAi transfection of marine invertebrates and demonstrate that knock downs of Hox-like genes in Cnidaria create substantial bauplan alterations, including the formation of multiple oral poles (“heads”) by Cnox-2 and Cnox-3 inhibition, deformation of the main body axis by Cnox-5 inhibition and duplication of tentacles by Cnox-1 inhibition. All phenotypes observed in the course of the RNAi studies were identical to those obtained by morpholino antisense oligo experiments and are reminiscent of macroevolutionary bauplan changes. The reported protocol will allow routine RNAi studies in marine invertebrates to be established

    Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Colobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera.</p> <p>Results</p> <p>Gene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing <it>Piliocolobus/Procolobus </it>and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from <it>Piliocolobus</it>/<it>Procolobus </it>into <it>Colobus</it>. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, <it>Semnopithecus </it>diverged first, indicating langur paraphyly. However, unidirectional gene flow from <it>Semnopithecus </it>into <it>Trachypithecus </it>via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene.</p> <p>Conclusions</p> <p>Overall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.</p

    Infrared laser ablation sample transfer of tissue DNA for genomic analysis

    No full text
    © 2017, Springer-Verlag Berlin Heidelberg. Infrared (IR) laser ablation was used to remove material from tissue sections mounted on microscope slides, with subsequent capture in a solvent-containing microcentrifuge tube. Experiments conducted with a 3200-bp double-stranded plasmid DNA template demonstrated IR-laser ablation transfer of intact DNA. The transfer efficiency and the molecular integrity of the captured DNA were evaluated using Sanger sequencing, gel electrophoresis, and fluorimetric analysis. The plasmid DNA was reproducibly transferred with an efficiency of 59 ± 3% at laser fluences of between 10 and 20 kJ/m2 at a wavelength of 3 μm. IR laser ablation sample transfer was then used to ablate and capture DNA from 50-μm-thick rat brain and kidney tissue sections. DNA was extracted from the captured material using five commercial DNA extraction kits that employed significantly divergent methodologies, with all kits recovering sufficient DNA for successful amplification by polymerase chain reaction (PCR). Four sets of primers were employed, targeting one region of the CYP 11b2 gene (376 bp) and three different regions of the Snn1g gene (298, 168, and 281 bp). The PCR results were not consistently reliable when using unpurified ablation samples; however, after extraction, all samples produced PCR products of the expected size. This work expands the sampling capabilities of IR laser ablation, demonstrating that DNA can be isolated from tissue samples for genomic assays. Due to the small size of the ablation regions (1 mm2), this technique will be useful for sampling discrete cell populations from tissue sections. [Figure not available: see fulltext.]

    RNA sampling from tissue sections using infrared laser ablation

    No full text
    © 2019 Elsevier B.V. RNA was obtained from discrete locations of frozen rat brain tissue sections through infrared (IR) laser ablation using a 3-μm wavelength in transmission geometry. The ablated plume was captured in a microcentrifuge tube containing RNAse-free buffer and processed using a commercial RNA purification kit. RNA transfer efficiency and integrity were evaluated based on automated electrophoresis in microfluidic chips. Reproducible IR-laser ablation of intact RNA was demonstrated with purified RNA at laser fluences of 3–5 kJ/m 2 (72 ± 12% transfer efficiency) and with tissue sections at a laser fluence of 13 kJ/m 2 (79 ± 14% transfer efficiency); laser energies were attenuated ∼20% by the soda-lime glass slides used to support the samples. RNA integrity from tissue ablation was \u3e90% of its original RIN value (∼7) and the purified RNA was sufficiently intact for conversion to cDNA and subsequent qPCR assay

    Die Bedeutung intergenerationaler Bildungsmobilität für die Gesundheit und die Lebenszufriedenheit von Schülerinnen und Schülern in Deutschland

    No full text
    Rathmann K, Herke MG, Kuntz B, et al. Die Bedeutung intergenerationaler Bildungsmobilität für die Gesundheit und die Lebenszufriedenheit von Schülerinnen und Schülern in Deutschland. Zeitschrift für Soziologie der Erziehung und Sozialisation. 2018;38(1):80-99

    Challenges in the design and regulatory approval of 3D-printed surgical implants: a two-case series

    No full text
    Background: Additive manufacturing or three-dimensional (3D) printing of metal implants can provide novel solutions for difficult-to-treat conditions, yet legislation concerning patient-specific implants complicates the implementation of these techniques in daily practice. In this Article, we share our acquired knowledge of the logistical and legal challenges associated with the use of patient-specific 3D-printed implants to treat spinal instabilities. Methods: Two patients with semiurgent cases of spinal instability presented to our hospital in the Netherlands. In case 1, severe kyphotic deformity of the thoracic spine due to neurofibromatosis type 1 had led to incomplete paralysis, and a strong metallic strut extending from C6 to T11 was deemed necessary to provide long-term anterior support. In case 2, the patient presented with progressive paralysis caused by cervicothoracic dissociation due to vanishing bone disease. As the C5–T1 vertebral bodies had mostly vanished, an implant spanning the anterior spine from C4 to T2 was required. Because of the complex and challenging nature of both cases, conventional approaches were deemed inadequate; instead, patient-specific implants were designed with use of CT scans and computer-aided design software, and 3D printed in titanium with direct metal printing. For each implant, to ensure patient safety, a comprehensive technical file (describing the clinical substantiation, technical and design considerations, risk analysis, manufacturing process, and labelling) was produced in collaboration with a university department certified for the development and manufacturing of medical devices. Because the implants were categorised as custom-made or personalised devices under the EU Medical Device Regulation, the usual procedures for review and approval of medical devices by a notified body were not required. Finite-element analyses, compression strength tests, and cadaveric experiments were also done to ensure the devices were safe to use. Findings: The planning, design, production, and insertion of the 3D-printed personalised implant took around 6 months in the first patient, but, given the experience from the first case, only took around 6 weeks in the second patient. In both patients, the surgeries went as planned and good positioning of each implant was confirmed. Both patients were discharged home within 1 week after the surgery. In the first patient, a fatigue fracture occured in one of the conventional posterior fusion rods after 10 months, which we repaired, without any deformation of the spine or signs of failure of the personalised implant observed. No other adverse events occurred up to 25 months of follow-up in case 1 and 6 months of follow-up in case 2. Interpretation: Patient-specific treatment approaches incorporating 3D-printed implants can be helpful in carefully selected cases when conventional methods are not an option. Comprehensive and efficient interactions between medical engineers and physicians are essential to establish well designed frameworks to navigate the logistical and regulatory aspects of technology development to ensure the safety and legal validity of patient-specific treatments. The framework described here could encourage physicians to treat (once untreatable) patients with novel personalised techniques. Funding: Interreg VA Flanders—The Netherlands programme, Applied and Engineering Sciences research programme, the Netherlands Organisation for Scientific Research, and the Dutch Arthritis Foundation Video Abstract.Biomaterials & Tissue Biomechanic
    corecore