2,690 research outputs found

    Positronium in intense laser fields

    Full text link
    The dynamics and radiation of positronium is investigated in intense laser fields.Comment: 13 pages, 3 figure

    Point trajectory planning of flexible redundant robot manipulators using genetic algorithms

    Get PDF
    The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRMs based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable

    Predictive Processing in Poetic Language: Event-Related Potentials Data on Rhythmic Omissions in Metered Speech

    Get PDF
    Predictions during language comprehension are currently discussed from many points of view. One area where predictive processing may play a particular role concerns poetic language that is regularized by meter and rhyme, thus allowing strong predictions regarding the timing and stress of individual syllables. While there is growing evidence that these prosodic regularities influence language processing, less is known about the potential influence of prosodic preferences (binary, strong-weak patterns) on neurophysiological processes. To this end, the present electroencephalogram (EEG) study examined whether the predictability of strong and weak syllables within metered speech would differ as a function of meter (trochee vs. iamb). Strong, i.e., accented positions within a foot should be more predictable than weak, i.e., unaccented positions. Our focus was on disyllabic pseudowords that solely differed between trochaic and iambic structure, with trochees providing the preferred foot in German. Methodologically, we focused on the omission Mismatch Negativity (oMMN) that is elicited when an anticipated auditory stimulus is omitted. The resulting electrophysiological brain response is particularly interesting because its elicitation does not depend on a physical stimulus. Omissions in deviant position of a passive oddball paradigm occurred at either first- or second-syllable position of the aforementioned pseudowords, resulting in a 2-by-2 design with the factors foot type and omission position. Analyses focused on the mean oMMN amplitude and latency differences across the four conditions. The result pattern was characterized by an interaction of the effects of foot type and omission position for both amplitudes and latencies. In first position, omissions resulted in larger and earlier oMMNs for trochees than for iambs. In second position, omissions resulted in larger oMMNs for iambs than for trochees, but the oMMN latency did not differ. The results suggest that omissions, particularly in initial position, are modulated by a trochaic preference in German. The preferred strong-weak pattern may have strengthened the prosodic prediction, especially for matching, trochaic stimuli, such that the violation of this prediction led to an earlier and stronger prediction error. Altogether, predictive processing seems to play a particular role in metered speech, especially if the meter is based on the preferred foot type

    Thermodynamics of Blue Phases In Electric Fields

    Full text link
    We present extensive numerical studies to determine the phase diagrams of cubic and hexagonal blue phases in an electric field. We confirm the earlier prediction that hexagonal phases, both 2 and 3 dimensional, are stabilized by a field, but we significantly refine the phase boundaries, which were previously estimated by means of a semi-analytical approximation. In particular, our simulations show that the blue phase I -- blue phase II transition at fixed chirality is largely unaffected by electric field, as observed experimentally.Comment: submitted to Physical Review E, 7 pages (excluding figures), 12 figure

    Longitudinal Relationships Between Parent Factors, Children’s Bullying, and Victimization Behaviors

    Get PDF
    Longitudinal data from NICHD Study of Early Child Care and Youth Development tested direct, indirect and reciprocal effects of maternal depressive symptoms, stress/support factors on child bullying and peer victimization through mother–child relationship quality at grades 3, 5, 6. Data from 828 mother-child dyads indicated small significant effects of some hypothesized pathways, including a small direct effect of maternal depressive symptoms at grade 3 on peer victimization at grade 5, but not on bullying behaviors. Mother–child relationship quality at grade 5 negatively predicted bullying at grade 6, but not peer victimization. There were small effects of bullying behaviors at grade 5 on decreased mother–child relationship quality at grade 6. Maternal employment at grade 3 predicted decreased bullying behaviors at grade 6 through mother–child relationship quality at grade 5. Findings are relevant for parent inclusive research and approaches to anti-bully intervention strategies and prevention policies

    Rheology of Lamellar Liquid Crystals in Two and Three Dimensions: A Simulation Study

    Full text link
    We present large scale computer simulations of the nonlinear bulk rheology of lamellar phases (smectic liquid crystals) at moderate to large values of the shear rate (Peclet numbers 10-100), in both two and three dimensions. In two dimensions we find that modest shear rates align the system and stabilise an almost regular lamellar phase, but high shear rates induce the nucleation and proliferation of defects, which in steady state is balanced by the annihilation of defects of opposite sign. The critical shear rate at onset of this second regime is controlled by thermodynamic and kinetic parameters; we offer a scaling analysis that relates the critical shear rate to a critical "capillary number" involving those variables. Within the defect proliferation regime, the defects may be partially annealed by slowly decreasing the applied shear rate; this causes marked memory effects, and history-dependent rheology. Simulations in three dimensions show instead shear-induced ordering even at the highest shear rates studied here. This suggests that the critical shear rate shifts markedly upward on increasing dimensionality. This may in part reflect the reduced constraints on defect motion, allowing them to find and annihilate each other more easily. Residual edge defects in the 3D aligned state mostly point along the flow velocity, an orientation impossible in two dimensions.Comment: 18 pages, 12 figure

    Forced dynamic dewetting of structured surfaces: Influence of surfactants

    Full text link
    We analyse the dewetting of printing plates for gravure printing with well-defined gravure cells. The printing plates were mounted on a rotating horizontal cylinder that is half immersed in an aqueous solution of the anionic surfactant sodium 1-decanesulfonate. The gravure plates and the presence of surfactants serve as one example of a real-world dewetting situation. When rotating the cylinder, a liquid meniscus was partially drawn out of the liquid forming a dynamic contact angle at the contact line. The dynamic contact angle is decreased on a structured surface as compared to a smooth one. This is due to contact line pinning at the borders of the gravure cells. Additionally, surfactants tend to decrease the dynamic receding contact angle. We consider the interplay between these two effects. We compare the height differences of the meniscus on the structured and unstructured area as function of dewetting speeds. The height difference increases with increasing dewetting speed. With increasing size of the gravure cells this height difference and the induced changes in the dynamic contact angle increased. By adding surfactant, the height difference and the changes in the contact angle for the same surface decreased. We further note that although the liquid dewets the printing plates some liquid is always left in the gravure cell. At high enough surfactant concentrations or high enough dewetting speed, the dynamic contact angles in the structured surface approach those in flat surfaces. We conclude that surfactant reduces the influence of surface structure on dynamic dewetting

    Structure of Blue Phase III of Cholesteric Liquid Crystals

    Get PDF
    We report large scale simulations of the blue phases of cholesteric liquid crystals. Our results suggest a structure for blue phase III, the blue fog, which has been the subject of a long debate in liquid crystal physics. We propose that blue phase III is an amorphous network of disclination lines, which is thermodynamically and kinetically stabilised over crystalline blue phases at intermediate chiralities}. This amorphous network becomes ordered under an applied electric field, as seen in experiments
    • …
    corecore