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SUMMARY

The paper focuses on the problem of point-to-point
trajectory planning for flexible redundant robot manip-
ulators (FRM) in joint space. Compared with irredundant
flexible manipulators, a FRM possesses additional possibil-
ities during point-to-point trajectory planning due to its
kinematics redundancy. A trajectory planning method to
minimize vibration and/or executing time of a point-to-point
motion is presented for FRMs based on Genetic Algorithms
(GAs). Kinematics redundancy is integrated into the
presented method as planning variables. Quadrinomial and
quintic polynomial are used to describe the segments that
connect the initial, intermediate, and final points in joint
space. The trajectory planning of FRM is formulated as a
problem of optimization with constraints. A planar FRM
with three flexible links is used in simulation. Case studies
show that the method is applicable.

KEYWORDS: Redundancy; Flexible-link robot; Trajectory plan-
ning; Point-to-point; Vibration; Genetic algorithms

1. INTRODUCTION

The use of a light-weight flexible robotic manipulator can
increase the load carrying capacity and the operational
speed. Other potential advantages of flexible robot include
lower energy consumption, use of smaller actuators, safer
operation due to reduced inertia, easier transport, and a
more compliant structure for assembly. Much work per-
formed on flexible robot manipulators in past decades
involve mainly modeling and vibration- and trajectory
tracking control.'” Since most of the robot tasks cannot be
conducted without maintaining a certain accuracy, the key
problem of flexible robot manipulators is the reduction in
the endpoint’s error resulting from vibration. This vibration
remains even after the robot arm reached the goal.

Several different approaches have already been reported
and proven to be applicable for reducing vibrations of one-
or two-link flexible arms. Most of the work is based on
(either open-loop or closed-loop) control strategies. For
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example, Mohri et al.* developed a planning method with
reduced vibration for a two link flexible manipulator along
a specified path, Singer et al.” and Singhose et al.® presented
shaping techniques to reduce robot arm vibration, Choura et
al.” presented an open-loop control method for a rotating
flexible beam, while Hillsley and Yurkovich® compared the
feedback control, shaping techniques and the composite
control method for a two-link flexible robot arm. However,
the above research focussed on flexible robot manipulators
with only one or two links.

It has been found recently that the redundancy, which is
used in robot manipulators to achieve additional perform-
ance while tracking a given end-effector trajectory,”'® has a
special application in vibration reduction of flexible manip-
ulators. Nguyen and Walker'' made use of the self-motion to
compensate for and damp out flexible deformation when the
degrees of redundancy are the same as the number of
deformation modes to be controlled. Yue'? presented an
optimal method, in which joint flexibility is also taken into
account, to choose the self-motion for vibration reduction in
FRM. Kim and Park"® employed the self-motion capability
to solve the tracking control problem of a FRM, and
developed an algorithm in which the self-motion is
evaluated so as to nullify the dominant modal force of
flexural motion induced by a rigid body motion. Never-
theless, trajectory planning of FRM in joint space was not
mentioned in the above papers.

Recently, research has been performed in new domains of
advanced robotics, i.e. large redundant robots with special
application fields, for example, aircraft cleaning and
removing paint from hulls. Off-line motion programs which
satisfy time and energy optimization criteria are developed
while considering compensation for the displacement
caused by the deflection of a large redundant robot.'*'

Compared with one- or two-link flexible robot manip-
ulators, it is reasonable to expect that kinematics
redundancy can also provide additional possibilities to
minimize vibration and/or execution time for FRMs by
performing trajectory planning in joint space. Moreover, the
geometric problems with Cartesian paths related to work-
space and singularities can be avoided if the point-to-point
task is planned in joint space. Even for large redundant
robots mentioned above, an appropriate trajectory with
acceptable vibration can save displacement compensation
computing time.

Genetic Algorithms (GAs) are population-based, stochas-
tic, and global search methods. Their performance is
superior to that of classical techniques'®'” and they have
been used successfully in robot path planning.'®" As
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discussed in, references [9, 10] a global solution is quite
difficult to achieve using traditional methods. The global
search ability of GAs provides a possibility to find global
solutions of redundancy. There has been little reported work
on applying GAs to trajectory planning for flexible robot
manipulators.

In the following chapters, a trajectory planning method
for FRM, based on Genetic Algorithms to minimize
vibration and/or executing time while moving between the
initial and final points, is presented. First, a finite element
model for describing FRM dynamics is introduced
(Section 2). Kinematics redundancy is integrated into the
planning method as variables (Section 3). Quadrinomial and
quintic polynomial are used to describe the paths which
connect the initial, intermediate and final points in joint
space (Section 4). The trajectory planning for FRM is
formulated as a problem of optimization (Section 5).
Suitable parameters for each polynomial between two
points and suitable initial and final configurations are
determined using GAs (Section 6). Finally, a planar FRM
with three flexible links is used in simulations, and two case
studies are conducted and discussed (Section 7).

2. DYNAMIC MODEL OF FRM

The finite element method is employed to build up the
dynamics equations of a FRM with multiple flexible links.
Figure 1 shows a generalized deformable element used here
with eight parameters. The transverse deflections of the
element are modeled by a quintic polynomial and the
longitudinal deflections assumed to be a linear polyno-
mial.*® The coordinates of the element are assembled in a
vector form as;

b=(dy & - B (1)

where ¢, and ¢ are the axial displacements along the x-
axis, ¢, and ¢, are the transverse displacements along the
y-axis, ¢, and ¢, are the rotary displacements about the z-
axis, and ¢, and ¢, are the curvature displacements in the xy
plane.

Without taking into account the joint flexibility, the
flexible deformations of the robot can be described by
system generalized coordinates® in a matrix form as;

{P}={D, @, D, }" 2
where 7, denotes the total number of the generalized
coordinates, and @, represents the i" system generalized

coordinates. The dynamic equations of a flexible robot
manipulator system can then be written as;

[M]{D)} +[C]{ D} +[K]{D)={P) 3)
{1} =(ID1+[JD{§} + (H} +{E) (4)
by 4,
a, gn
o, S
‘-._J"ﬁg &
x.-;‘

Fig. 1. An element and its generalized coordinates.
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where [M] is the n,x n, global mass matrix, [C] is the n,xn,
global damping matrix, [K] is the n,xn, global stiffness
matrix, {P} is the n,x 1 inertia force matrix, {®} and {P}
are the generalized velocity vector and generalized accelera-
tion vector respectively, which describe the deformation
behavior of the flexible links, n, is the number of the
coordinates, [D] is the nx n inertia mass matrix, {q} and g}
are, respectively, the vectors which describe the joint angle
and angular acceleration, {H} is the nx1 centrifugal,
gravitational coriolis of rigid and flexible coupling terms,
{E} is the nx 1 link flexibility term, [J,] is the nx 1 rotor
inertia mass matrix, {7} is the nx 1 actuator torque matrix,
and n is the number of joints in the robot system. All the
matrices above are functions of {¢}, {¢} and {g}.

3. REDUNDANCY RESOLUTION OF A FRM

For a redundant robot, the number of degrees of freedom n
of a manipulator is greater than the number of end-effector
degrees of freedom m. That is, given a position/posture of
the end-effector, there are an infinite number of robot
configurations available. In this study, the redundancy of a
robot is used to avoid the acute vibration and/or minimize
executing time when its end-effector moves from one point
to another. How should the redundancy of the FRM be used
to attain additional aims, such as to avoid acute vibration?
There already exist different methods, so it is useful to
introduce the known methods briefly before presenting our
own method.

3.1. Real position method

As far as the FRM is concerned, the real pose of its end-
effector is the function not only of the joint angle vector
{q}, but also the flexible link deformation;

{x}=£(q. 0) &)

where {x}eR"™ are the coordinates of the end-effector,
{6} eR' are the coordinates describing the flexible link
deformations, and [ is the number of the generalized
coordinates. Based on the above equations, one may finally
obtain the joint planning equations,'"'

{gy=1771(x%} — U NG} — U6} — {6, )
+(U]1-7ID{E} (6)

where [J,]eR™*" is the Jacobian matrix, and [J;]eR g
the flexible Jacobian matrix, [J/]eR"*™ is the pseu-
doinverse of the Jacobian matrix [J,], {x} is the end-effector
velocity, {x} is the end-effector acceleration, {éf} is the
velocity of the coordinates, [/]eR"*" is the unit matrix,
{€} eR" is the null space vector for the redundant robot, and
(-1 1J.D{€} eN(J) is the homogeneous solution that
is orthogonal with respect to [J]{x}. The homogeneous
solution is the self-motion between the links of a redundant
manipulator that does not cause any movement of its end-
effector. Furthermore, [J] is given as;

1= 01D (7

Based on equation (6), different self-motions can be chosen
according to different demands. The planning equation (6)
can also compensate for the flexible deformation automat-
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ically. However, this compensation may cause acute
vibration due to its high frequency. Moreover, if the
vibration deformation can be reduced enough in the later
path planning, the compensation becomes unnecessary.
Therefore, compensation equation (6) seems to be unprac-
tical for our point-to-point task.

3.2. Nominal position method

The vibration of each point usually occurs around its
nominal position, implying that a FRM can be treated as a
rigid body robot in certain cases. The nominal position of a
rigid redundant FRM can be determined by the joint angle
vector {g}, which means the values of {6} and {6} in
equation (6) are zero. The nominal motion of a FRM can be
described as;*!°

{gy=710%} =T HgH+WUT=UIDIE (®)

The trajectory of a FRM can be planned as for a rigid body
robot according to equation (8). It is found that the above
method is only applicable when the prescribed trajectory is
described by {x}. This kind of endpoint trajectory, with a
Cartesian position and orientation as a function of time, is
difficult to generate, especially when a complex type of line
is involved.”!

3.3. Initial and final postures of FRM

The point-to-point trajectory planning can be conducted by
using the above equation (6) with compensation or equation
(8) without any compensation. However, the results based
on equation (6) or (8) are local solutions™'*'? and are prone
to various problems related to workspace and singularities,
since the trajectory is given in a Cartesian space. As
mentioned above, the presented method will conduct the
planning problem for the FRM in joint space. This means
that the various problems encountered in a Cartesian space
can be easily avoided.

Since only a point-to-point trajectory is considered in this
paper, there are only two important points (i.e. the initial
and final point of a possible path) that should be achieved.
Corresponding to the two points, there are infinite possible
configurations for each point due to kinematics redundancy,
as shown in Figure 2. This means the FRM can start from

Final point

Trajectory
—_—

Initial point

Fig. 2. Different configurations of a FRM correspond to initial
and final point of trajectory.

271

different poses and end with different poses according to its
task.

Thus, the redundancy problem with respect to initial and
final points is the determination of the initial and final
postures. These two postures can be described by 2(n-m)
parameters in joint space, where (n-m) are the redundant
degree of freedom of the FRM. In our approach, as
described in the following chapters, these 2(n-m) variables
can be determined by optimization; thus, the redundancy
solution corresponding to initial and final points will be
determined by using GAs.

The problems of redundancy corresponding to inter-
mediate via points will also be solved efficiently by
planning in joint space instead of in a Cartesian task space,
as described in the following sections.

4. TRAJECTORY PLANNING STRATEGY

Here, trajectory refers to a time history of position, velocity,
and acceleration for each degree of freedom. Suppose that
the point-to-point trajectory is connected by several seg-
ments with continuous acceleration at the intermediate via
point (as shown in Figure 3). The position of each
intermediate point is supposed to be unknown in the
following section of the paper. Of course, the intermediate
points can also be given as particular points that should be
passed through. This is useful especially when there is an
obstacle in the working area.

If we wish to be able to specify the position, velocity, and
acceleration at the beginning and end of path segment, a
quadrinomial and quintic polynomial are required. Let us
assume that there are m, intermediate via points between the
initial and the final points.

Between the initial point to m, intermediate via points, a
quadrinomial is used to describe these segments as;

0. (D=ap+ayt+at;+ast] +ayt}, (i=0,- - -, m,—1) (9)

where the constrains are given as

0,=ay (10)
0.,1=ag+a,T+a,T;+a,T;+a,T} (11)
b=a, (12)

0., ,=a,+2a,T+3a,T?+4a,T3; (13)
6.=2a, (14)

intermediate
point i ,/\"

N

JSinal point

/ initial point

Fig. 3. Intermediate points on the point-to-point path.
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where T; is the executing time from point i to point i+ 1. The

five unknowns can be solved as

=0, (15)
a, =6, (16)
b,
ar= (17)
460.,,— 6., T, —46,—30T,— 6T1*
aB:( i+1 i+140 T3t iLi i ,) (18)
/ A éiTiz
0.,.,T,—306,,+30.+20T,+ >
ay= T4 (19)

i

The intermediate point i+1’s acceleration can be obtained

as:

6..1=2a,+6a,T,+12a,T}

(20)
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As formulated above, the total parameters to be determined
are the joint angles of each intermediate via point (nxm,
parameters), the joint angular velocities of each inter-
mediate point (nxm, parameters), the execution time for
each segment (m,+1 parameters), and the initial and final
posture of the FRM (2(n — m) parameters). Therefore, there
are a total of ((2n+1)m,+2(n—m)+1) parameters to be
determined. It should be pointed out that the joint angular
acceleration at each intermediate point can be obtained via
equation (20). If all the intermediate points are connected by
quintic polynomials, there will be ((3n+1) m,+2(n —m)+1)
parameters to be determined. This would be more time-
consuming, that is why we choose both quadrinomial and
quintic polynomial to generate the segments.

All of the above parameters can be determined by using
the following optimization method.

S. OPTIMIZING THE TRAJECTORY USING GAs
For a point-to-point trajectory planning problems of FRM,
the vibrational deformation amplitude is one of the most
important factors involved in the optimization. It is
reasonable to assume the vibration deformation amplitude
as one of the objects in the path planning process.

The segment between the number m, of intermediate points
and the final point can be described by quitic polynomial
as;

f: Ayip

(34)

0i,i+l(t)=bi0+bi]ti+bi2t12+bi3ti3+bi4t?+bi5t?’ (i=mp) (2D

where the constraints are given as;

6,=by (22)

0,1 =by+b, T+b,T?+b,T:+b,Ti+bsT; (23)
0,=b, (24)

0, 1=b, +2b,T,+3b;T*+4b,T;+5b;sT} (25)
6,=2b,, (26)
G,,,=2b,,+6b,;T,+12b,T?+20b,T? (27)

and these constraints specify a linear set of six equations

with six unknowns whose solution is;

by="0 (28)
by=0, (29)
0.
b,== 30
i2 2 ( )
200, —200,— (86,,,+126)T,— (36,— 6,, )T?
bi3=( i+1 i ( i+1 g 1)1 ( i z+1) z) (31)
273
300.— 300, ,+(146,,,+160)T,+(36,— 26, )T?
bi4=( i i+1 ( i+1 . l)l ( i z+l) z) (32)
27!
(126,,,— 126,— (60, ,+60)T,— (6, — b,,)T?)
i5= T3 (33)

where a,,, is the largest amplitude of vibrational deforma-
tion during the point-to-point path. The above optimization
is available only when the execution time from one point to
another is fixed or prescribed.

Therefore, it is also obvious that the total execution time
is another important factor that has a significant influence on
the dynamic behaviors of a FRM. Thus, a multiple objective
optimization is presented. Equation (34) can be extended
as;

Ju=wia,,+wol,,, (35)
where w, and w, are the weight coefficients and ¢, is the
total execution time for the point-to-point motion of a
FRM.

Since the limitations of joint angles, joint angular
velocities, joint angular accelerations and joint torques are
considered in the optimal process, the objective and
constraints are finally written as;

min—f, =wa,;,+wst,, (36)

St Qimin<qi<qimn @@=1,---,n) (37)
O in S OS W (@=1,--+,n) (38)
EiminSESE o  (I=1,---,n) (39)
TinST Ty (i=1,---,m) (40)
Tomin S TS Timax (=120, 1) (41)

where ¢;.;, and g; ., are the lower and upper permitted
angle of the i” joint, @, ;, and w; .., are the lower and upper

i,min i,max
. ., . 'fh . .
permitted angular velocities of the i joint, €, and &,

i,min
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Procedure ptp
BEGIN
M=l
Initialize ( F, )
Evaluate ( P, );
REPEAT
Selection parents from P, ;
Crossover ( P, );
Mutation { P, )i
Form new gencration P, ;
Evaluate ( F, ),
Ni=N+1;
UNTIL Termination Condition = True;
Select point-to-point trajectory of FRM;
END

Fig. 4. Procedure to optimize point-to-point trajectory of FRM.

are the lower and upper permitted angular accelerations of
the i" joint, T}, and T}, are the lower and upper permitted
executing times of the i segment, and 7;,;,, and 7, ,,, are the
lower and upper computed torque of the i joint, respec-
tively.

Since the basic formulation of point-to-point motion is
given, if the parameters of the motion have been deter-
mined, then the optimal trajectory can be easily determined.
We use genetic algorithms to determine those parameters.
GA programs can be found described in detail.'” The GA
procedure proposed to optimize point-to-point trajectories
of FRM is shown in Figure 4.

In the procedure, the coding method for the parameters is
binary coding, which has been shown to be the most
effective coding method for this type of parameter optimi-
zation."”

As shown in Figure 4, initialization randomly generates
an initial host population P,. The population Py of the N"
generation is formed by survivors from the last generation
and new individuals generated through mutation and
crossover. Single-point crossover is used to form the new
generation. The point-to-point trajectory is finally decided
when the termination condition is satisfied. The termination
condition of the procedure can be maximum generations or
a certain value according to different demand.

0.0014 %T -

0.0012 |

0.001

0.0008

0.0006

Endpoint Deformation (m)

0.0004 - o

=y
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Table I. The robot parameters involved in simulation

Length of each link 250 mm
Height of each link 3 mm
Width of each link 4 mm
Elastic modulus 7.10x 10" Pa
Shear modulus 2.60x 10" Pa
Lumped mass at each 40 ¢g
distal end of link
Lumped mass at endpoint 20g

1.5x10”° Kgm?
1.0x107° Kgm?
0.5x107° Kgm?

Moment inertia of base joint
Moment inertia of 2™ joint
Moment inertia of 3" joint

6. CASE STUDIES

A planar FRM with three flexible links is used for the
numerical simulation in case studies, as shown in Figure 2.
The robot has one redundant degree of freedom in terms of
positioning. Its parameters are given in Table 1). The
materials of each link is aluminum. All of the cases are
simulated in the horizontal plane with no obstacle in the
working area.

The constraints used in the following cases are: joint
angles g;e[—2m, 27rad, joint angular velocities ;e
[—8, 8] radls, joint angular accelerations ;e[ — 40, 40]
radls’, computed joint torques T, €[—2.5,2.5]Nm,
n,e[— 1.5, 1.5]Nm, and 7,e[ — 1.0, 1.0]Nm respectively.

6.1. Case one
In this case study, only the vibrational amplitude is assumed
to be the objective of optimization. One intermediate via
point and a one second execution time for each segment are
assumed, while the termination condition of 200 genera-
tions was used. All the selected trajectories start from the
same initial configuration. There are seven parameters to be
determined in this case, viz. configuration at final point, the
three joint angles and the three joint angular velocities of the
intermediate point. The optimal process costs about a half
hour with a Pentium II computer. The results are below.

It is found that the vibrational amplitude is obviously
reduced (shown in Figure 5. Vibration at different genera-

00002 st

. S

e

FEFEFEFE A PN SRR TR

0 20 40 60 80 100 120 140 160 180 200

Generations

Fig. 5. Endpoint deformation amplitude of FRM versus number of generations.
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Fig. 6. Endpoint deformation curves at 10", 100" and 200" generations (a) in x direction (b) in Y direction respectively.

0.8
06
04
- 02 . [-o-10 gen.
E | o100 gen.
5‘_’ | = 200 gen.
0! J
-0.2
-0.4
0.6 N U SO 3
06 -04 -0.2 0 02 04 06 08
X{m)

Fig. 7. The end-effector’s trajectory at 10", 100™ and 200"
generations (The point-to-point paths start from right to left).

tions can be found in detail in Figure 6. The end-effector’s
trajectories between the two points are shown in Figure 7. It
is noticeable that the end-effector’s trajectories are quite
different between the 10th and 100th generations (Figure 7).
The vibrational amplitude decreased rapidly between these
generations, reflecting the ability of GAs to find solutions
with efficiency.

The joint angle, angular velocity, angular acceleration
and computed joint torque of each joint at the 10™, 100" and
200" generation are compared in Figures 8, 9 and 10,
respectively. It is clear that the first and second joint angular
acceleration at the 100th or 200th generation is quite
smooth, however, the third joint angular acceleration at the
same generation has a sharp peak. This means that the third
link swings to avoid acute inertia. Since the computed
torque can be influenced by vibration, the results at different
generations are also quite different, even at the end of
trajectories (as shown in Figure 10).

The configurations at the 10", 100™ and 200" generations
are shown in Figure 11. It was found that the 100™ and 200"
generation’s moving areas are confined to one side and have
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Fig. 8. The angle, angular velocity, angular acceleration and computed joint torque of the first joint at 10", 100™ and 200™ generation.
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Fig. 9. The angle, angular velocity, angular acceleration and Computed joint torque of the second joint at 10", 100" and 200" generation.
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Fig. 10. The angle, angular velocity, angular acceleration and Computed joint torque of the third joint at 10™, 100" and 200"

generation.

shorter trajectories compared with the 10" generation.
However, the straight line from the initial to the final point,
while the shortest one, is far from the best one according to
the GA optimization results.

6.2. Case two

In case two, the execution time for the two segments and the
vibrational amplitude are both assumed to be part of the
objective, according to equation (36).

The multiple weighted value is, in fact, acting as the
fitness. The weight coefficient w, for the vibrational
amplitude is assumed to be 100, and w, for the execution
time is assumed to be 1 during the process. One inter-
mediate via point is also assumed. There are nine
parameters to be determined in this case: configuration at
final point, the three joint angles and the three joint angular
velocities of the intermediate point, and the two execution
times for the two segments. All of the selected trajectories
start from the same initial configuration.

The results can be found in the following figures. Figure
12 shows the multiple weighted values and the execution
time for each segment versus number of generations. The
execution time for each segment decreases sharply before
the 40™ generation. The execution time of the segment was
observed to increase a bit around the 30"™ generation,
because other aspects of the multiple objective were
reduced in the meantime.

The optimization results at the 40" and 200™ generations
are compared in detail in Figures 13 through Figure 17.
Although the vibrational amplitude and execution time are
reduced sharply even after 40 generations, one finds that
after 160 generations, each of the parameters is reduced
greatly.

One may also find that at the 40™ generation, the third
joint opens too much at the first segment and has to be
closed a little bit at the second segment as shown in Figure
16 and Figure 17. This kind of useless motion may not only
increase executing time, but also increase the inertia, which
results in vibration. This maybe explains why the 200"



Genetic algorithms

0.8 | .
0.6 |
0.4

02

Y(m)

02 -
04 ¢

_".ﬁ:...........___.... P SR PR
06 -04 -02 0 02 04 06 08

X(m)
(a)

0.8
0.6 |

04 |

06 04 02 0 02 04 06 08
X(m)
(b)

Fig. 11. The configurations of FRM at (a) 10™ generation, (b)
100" generation and (c) 200" generation respectively.

generation seems to be more effective in the multiple
objective optimization.

As shown in the above two cases, our presented approach
for point-to-point trajectory planning of FRMs to minimize
vibration amplitude and/or executing time has proven to be
applicable. Moreover, special objectives (joint acceleration,
torques, etc. for example) can also be integrated into the
multiple objective to reach special aims.

It should be noticed that the resolution of robots is not
considered in the above planning method. The actual
vibration (and, of course, the actual trajectory) may be
different, as it would be affected by the actual control
torques applied.

7. CONCLUSIONS

In the above sections, the problem of trajectory planning for
FRMs is studied in detail. A trajectory planning method for
FRM based on Genetic Algorithms (GAs) to minimize
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Fig. 11. Continued.

vibration and/or executing time of the point-to-point motion
is presented. Kinematics redundancy is considered as a
planning variable in the presented method. Quadrinomial
and quintic polynomials are used to describe the segments
that connect the initial, intermediate, and final points in joint
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Fig. 12. Multiple weighted value (a) and executing time of each
segment (b) versus number of generations.
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Fig. 13. Endpoint deformation curves in (a) X direction (b) Y direction.

space. Suitable parameters for each polynomial between
two points and suitable initial and final configurations can
be determined by using GAs. Various problems related to
workspace and singularities in Cartesian space are avoided
by planning in joint space. A planar FRM with three flexible
links was used in simulations. Case studies show the method
to be applicable.

The presented approach can be easily extended by
integrating additional parameters (for example, joint accel-

4
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o
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_] ...._......__..._.J—._......u....._
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Time(s)
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erations, torques etc.) into the multiple objectives. Potential
applications for the presented method include trajectory
planning for large scale redundant robots and light-weight
space robot arms, to achieve fast but low vibration
operations.
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