374 research outputs found

    Role of Robot-Assisted Pelvic Surgery

    Get PDF
    The purpose of this study was to assess the current role of robot-assisted urological surgery in the female pelvis. The recently published English literature was reviewed to evaluate this role, with special emphasis on reconstructive procedures. These included colposuspension for genuine female stress urinary incontinence, repair of female genitourinary fistulas, ureterosciatic hernias, sacrocolpopexy for vault prolapse, ureterolysis and omental wrap for retroperitoneal fibrosis, ureteric reimplantation, and bladder surgery. To date, a wide spectrum of urogynecological reconstructive procedures have been performed with the assistance of the surgical robot and have been reported worldwide. Currently, a number of female pelvic ablative and reconstructive procedures are technically feasible with the aid of the surgical robot. While the role of robot-assisted surgery for bladder cancer, ureterolysis, ureteric reimplantation, repair of genitourinary fistulas, colposuspension, and sacrocolpopexy is nearly established among urologists, other procedures, such as myomectomy, simple hysterectomy, trachelectomy, and Wertheim's hysterectomy, are still evolving with gynecologists. The advantages of robot assistance include better hand-eye coordination, three-dimensional magnified stereoscopic vision with depth perception, intuitive movements with increased precision, and filtering of hand tremors. For most of the currently performed procedures in selected patients, the robot-assisted surgical outcomes appear to be relatively superior as compared to an open and purely laparoscopic surgical procedure

    Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure

    Get PDF
    RATIONALE: In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. OBJECTIVE: This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. METHODS AND RESULTS: We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced β2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of β2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. CONCLUSIONS: In hypertrophic rabbit myocytes, selectively enhanced β2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine β2 adrenergic receptor signaling and restore myocyte contractility in response to β adrenergic stimulation

    Does race impact functional outcomes in patients undergoing robotic partial nephrectomy?

    Get PDF
    Background: The role of race on functional outcomes after robotic partial nephrectomy (RPN) is still a matter of debate. We aimed to evaluate the clinical and pathologic characteristics of African American (AA) and Caucasian patients who underwent RPN and analyzed the association between race and functional outcomes. Methods: Data was obtained from a multi-institutional database of patients who underwent RPN in 6 institutions in the USA. We identified 999 patients with complete clinical data. Sixty-three patients (6.3%) were AA, and each patient was matched (1:3) to Caucasian patients by age at surgery, gender, Charlson Comorbidity Index (CCI) and renal score. Bivariate and multivariate logistic regression analyses were used to evaluate predictors of acute kidney injury (AKI). Kaplan-Meier method and multivariable semiparametric Cox regression analyses were performed to assess prevalence and predictors of significant eGFR reduction during follow-up. Results: Overall, 252 patients were included. AA were more likely to have hypertension (58.7% Conclusions: Although African American patients were more likely to have hypertension, renal function outcomes of robotic partial nephrectomies were not significantly different when stratified by race. However, future studies with larger cohorts are necessary to validate these findings

    HEROIC: a 5-year observational cohort study aimed at identifying novel factors that drive diabetic kidney disease: rationale and study protocol

    Get PDF
    Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. INTRODUCTION: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease worldwide and a major cause of premature mortality in diabetes mellitus (DM). While improvements in care have reduced the incidence of kidney disease among those with DM, the increasing prevalence of DM means that the number of patients worldwide with DKD is increasing. Improved understanding of the biology of DKD and identification of novel therapeutic targets may lead to new treatments. A major challenge to progress has been the heterogeneity of the DKD phenotype and renal progression. To investigate the heterogeneity of DKD we have set up The East and North London Diabetes Cohort (HEROIC) Study, a secondary care-based, multiethnic observational study of patients with biopsy-proven DKD. Our primary objective is to identify histological features of DKD associated with kidney endpoints in a cohort of patients diagnosed with type 1 and type 2 DM, proteinuria and kidney impairment. METHODS AND ANALYSIS: HEROIC is a longitudinal observational study that aims to recruit 500 patients with DKD at high-risk of renal and cardiovascular events. Demographic, clinical and laboratory data will be collected and assessed annually for 5 years. Renal biopsy tissue will be collected and archived at recruitment. Blood and urine samples will be collected at baseline and during annual follow-up visits. Measured glomerular filtration rate (GFR), echocardiography, retinal optical coherence tomography angiography and kidney and cardiac MRI will be performed at baseline and twice more during follow-up. The study is 90% powered to detect an association between key histological and imaging parameters and a composite of death, renal replacement therapy or a 30% decline in estimated GFR. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Bloomsbury Research Ethics Committee (REC 18-LO-1921). Any patient identifiable data will be stored on a password-protected National Health Services N3 network with full audit trail. Anonymised imaging data will be stored in a ISO27001-certificated data warehouse.Results will be reported through peer-reviewed manuscripts and conferences and disseminated to participants, patients and the public using web-based and social media engagement tools as well as through public events

    Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease.

    Get PDF
    OBJECTIVE: Congenital heart disease (CHD) is the most frequent birth defect worldwide. The number of adult patients with CHD, now referred to as ACHD, is increasing with improved surgical and treatment interventions. However the mechanisms whereby ACHD predisposes patients to heart dysfunction are still unclear. ACHD is strongly associated with metabolic syndrome, but how ACHD interacts with poor modern lifestyle choices and other comorbidities, such as hypertension, obesity, and diabetes, is mostly unknown. METHODS: We used a newly characterized mouse genetic model of ACHD to investigate the consequences and the mechanisms associated with combined obesity and ACHD predisposition. Metformin intervention was used to further evaluate potential therapeutic amelioration of cardiac dysfunction in this model. RESULTS: ACHD mice placed under metabolic stress (high fat diet) displayed decreased left ventricular ejection fraction. Comprehensive physiological, biochemical, and molecular analysis showed that ACHD hearts exhibited early changes in energy metabolism with increased glucose dependence as main cardiac energy source. These changes preceded cardiac dysfunction mediated by exposure to high fat diet and were associated with increased disease severity. Restoration of metabolic balance by metformin administration prevented the development of heart dysfunction in ACHD predisposed mice. CONCLUSIONS: This study reveals that early metabolic impairment reinforces heart dysfunction in ACHD predisposed individuals and diet or pharmacological interventions can be used to modulate heart function and attenuate heart failure. Our study suggests that interactions between genetic and metabolic disturbances ultimately lead to the clinical presentation of heart failure in patients with ACHD. Early manipulation of energy metabolism may be an important avenue for intervention in ACHD patients to prevent or delay onset of heart failure and secondary comorbidities. These interactions raise the prospect for a translational reassessment of ACHD presentation in the clinic

    APOL1 Kidney-Risk Variants Induce Mitochondrial Fission

    Get PDF
    IntroductionAPOL1 G1 and G2 nephropathy-risk variants cause mitochondrial dysfunction and contribute to kidney disease. Analyses were performed to determine the genetic regulation of APOL1 and elucidate potential mechanisms in APOL1-nephropathy.MethodsA global gene expression analysis was performed in human primary renal tubule cell lines derived from 50 African American individuals. Follow-up gene knock out, cell-based rescue, and microscopy experiments were performed.ResultsAPOL1 genotypes did not alter APOL1 expression levels in the global gene expression analysis. Expression quantitative trait locus (eQTL) analysis in polyinosinic-polycytidylic acid (poly IC)-stimulated renal tubule cells revealed that single nucleotide polymorphism (SNP) rs513349 adjacent to BAK1 was a trans eQTL for APOL1 and a cis eQTL for BAK1; APOL1 and BAK1 were co-expressed in cells. BAK1 knockout in a human podocyte cell line resulted in diminished APOL1 protein, supporting a pivotal effect for BAK1 on APOL1 expression. Because BAK1 is involved in mitochondrial dynamics, mitochondrial morphology was examined in primary renal tubule cells and HEK293 Tet-on cells of various APOL1 genotypes. Mitochondria in APOL1 wild-type (G0G0) tubule cells maintained elongated morphology when stimulated by low-dose poly IC, whereas those with G1G1, G2G2, and G1G2 genotypes appeared to fragment. HEK293 Tet-on cells overexpressing APOL1 G0, G1, and G2 were created; G0 cells appeared to promote mitochondrial fusion, whereas G1 and G2 induced mitochondrial fission. The mitochondrial dynamic regulator Mdivi-1 significantly preserved cell viability and mitochondrial cristae structure and reversed mitochondrial fission induced by overexpression of G1 and G2.ConclusionResults suggest the mitochondrial fusion/fission pathway may be a therapeutic target in APOL1-nephropathy
    • …
    corecore