59 research outputs found

    Quality Control of Hypericum perforatum L. Analytical challenges and recent progress

    Get PDF
    Objectives The most widely applied qualitative and quantitative analytical methods in the quality control of Hypericum perforatum extracts will be reviewed, including routine analytical tools and most modern approaches. Key findings Biologically active components of H. perforatum are chemically diverse, therefore different chromatographic and detection methods are required for the comprehensive analysis of St. John’s wort extracts. Naphthodianthrones, phloroglucinols and flavonoids are the most widely analysed metabolites of this plant. For routine quality control, detection of major compounds belonging to these groups seem to be sufficient, however closer characterisation requires the detection of minor compounds as well. Conclusions TLC and HPTLC are basic methods in the routine analysis, whereas HPLC-DAD is the most widely applied method for quantitative analysis due to its versatility. LC-MS is gaining importance in pharmacokinetic studies due to its sensitivity. Modern approaches, such as DNA barcoding, NIRS and NMR metabolomics may offer new possibilities for the more detailed characterization of secondary metabolite profile of Hypericum perforatum extracts

    Anthropogenically-mediated density dependence in a declining farmland bird

    Get PDF
    Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e. at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success
    corecore