14,354 research outputs found

    Effects of motion on jet exhaust noise from aircraft

    Get PDF
    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles

    X-ray absorption branching ratio in actinides: LDA+DMFT approach

    Full text link
    To investigate the x-ray absorption (XAS) branching ratio from the core 4d to valence 5f states, we set up a theoretical framework by using a combination of density functional theory in the local density approximation and Dynamical Mean Field Theory (LDA+DMFT), and apply it to several actinides. The results of the LDA+DMFT reduces to the band limit for itinerant systems and to the atomic limit for localized f electrons, meaning a spectrum of 5f itinerancy can be investigated. Our results provides a consistent and unified view of the XAS branching ratio for all elemental actinides, and is in good overall agreement with experiments.Comment: 6 pages, 4 figure

    Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5

    Full text link
    In Cerium-based heavy electron materials, the 4f electron's magnetic moments bind to the itinerant quasiparticles to form composite heavy quasiparticles at low temperature. The volume of the Fermi surfacein the Brillouin zone incorporates the moments to produce a "large FS" due to the Luttinger theorem. When the 4f electrons are localized free moments, a "small FS" is induced since it contains only broad bands of conduction spd electrons. We have addressed theoretically the evolution of the heavy fermion FS as a function of temperature, using a first principles dynamical mean-field theory (DMFT) approach combined with density functional theory (DFT+DMFT). We focus on the archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum critical point. Upon cooling, both the quantum oscillation frequencies and cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity coherence peak observed at T ~ 50 K is the result of the competition between the binding of incoherent 4f electrons to the spd conduction electrons at Fermi level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page Supplementary information, 2 figures for the Supplementary information. Supplementary movie 1 and 2 are provided on the webpage(http://www-ph.postech.ac.kr/~win/supple.html

    Dynamical Mean-Field Theory within the Full-Potential Methods: Electronic structure of Ce-115 materials

    Full text link
    We implemented the charge self-consistent combination of Density Functional Theory and Dynamical Mean Field Theory (DMFT) in two full-potential methods, the Augmented Plane Wave and the Linear Muffin-Tin Orbital methods. We categorize the commonly used projection methods in terms of the causality of the resulting DMFT equations and the amount of partial spectral weight retained. The detailed flow of the Dynamical Mean Field algorithm is described, including the computation of response functions such as transport coefficients. We discuss the implementation of the impurity solvers based on hybridization expansion and an analytic continuation method for self-energy. We also derive the formalism for the bold continuous time quantum Monte Carlo method. We test our method on a classic problem in strongly correlated physics, the isostructural transition in Ce metal. We apply our method to the class of heavy fermion materials CeIrIn_5, CeCoIn_5 and CeRhIn_5 and show that the Ce 4f electrons are more localized in CeRhIn_5 than in the other two, a result corroborated by experiment. We show that CeIrIn_5 is the most itinerant and has a very anisotropic hybridization, pointing mostly towards the out-of-plane In atoms. In CeRhIn_5 we stabilized the antiferromagnetic DMFT solution below 3K, in close agreement with the experimental N\'eel temperature.Comment: The implementation of Bold-CTQMC added and some test of the method adde

    Multiplet ligand-field theory using Wannier orbitals

    Full text link
    We demonstrate how ab initio cluster calculations including the full Coulomb vertex can be done in the basis of the localized, generalized Wannier orbitals which describe the low-energy density functional (LDA) band structure of the infinite crystal, e.g. the transition metal 3d and oxygen 2p orbitals. The spatial extend of our 3d Wannier orbitals (orthonormalized Nth order muffin-tin orbitals) is close to that found for atomic Hartree-Fock orbitals. We define Ligand orbitals as those linear combinations of the O 2p Wannier orbitals which couple to the 3d orbitals for the chosen cluster. The use of ligand orbitals allows for a minimal Hilbert space in multiplet ligand-field theory calculations, thus reducing the computational costs substantially. The result is a fast and simple ab initio theory, which can provide useful information about local properties of correlated insulators. We compare results for NiO, MnO and SrTiO3 with x-ray absorption, inelastic x-ray scattering, and photoemission experiments. The multiplet ligand field theory parameters found by our ab initio method agree within ~10% to known experimental values

    Temperature dependent Eu 3d-4f X-ray Absorption and Resonant Photoemission Study of the Valence Transition in EuNi2(Si0.2Ge0.8)2EuNi_2(Si_{0.2}Ge_{0.8})_2

    Full text link
    We study the mixed valence transition (TTv_{v} \sim80 K) in EuNi2_{2}(Si0.2_{0.2}Ge0.8_{0.8})2_{2} using Eu 3d4fd-4f X-ray absorption spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The Eu2+^{2+} and Eu3+^{3+} main peaks show a giant resonance and the spectral features match very well with atomic multiplet calculations. The spectra show dramatic temperature (TT)-dependent changes over large energies (\sim10 eV) in RESPES and XAS. The observed non-integral mean valencies of \sim2.35 ±\pm 0.03 (TT = 120 K) and \sim2.70 ±\pm 0.03 (TT = 40 K) indicate homogeneous mixed valence above and below TTv_{v}. The redistribution between Eu2+^{2+}4f74f^7+[spd]0[spd]^0 and Eu3+^{3+}4f64f^6+[spd]1[spd]^1 states is attributed to a hybridization change coupled to a Kondo-like volume collapse.Comment: 4 pages, 3 figure

    Nucleosynthesis in the Early Galaxy

    Full text link
    Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements Z47Z\leq47. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-poor stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities nn1013n_{n}\leq10^{13} cm3cm^{-3} or in the range nn1024n_{n}\geq10^{24} cm3cm^{-3} best explain the observations.Comment: 28 pages, 7 Postscript figures. To be published in The Astrophysical Journa
    corecore