30 research outputs found

    Neuroanatomic Correlates of Female Sexual Dysfunction in Multiple Sclerosis

    Get PDF
    OBJECTIVE: This study intended to determine associations between alterations of female sexual arousal as well as vaginal lubrication and the site of cerebral multiple sclerosis (MS) lesions. METHODS: In 44 women with MS (mean age: 36.5 ± 9.9 years), we assessed their medical history and evaluated sexual function using the Female Sexual Function Index scores for arousal and vaginal lubrication. We determined potential confounding factors of sexual dysfunction: age; disease duration; physical disability; depression; bladder or urinary dysfunction; and total volume of cerebral lesions. Arousal and lubrication scores were correlated with one another and with potential confounding factors. Cerebral MS lesions were recorded on imaging scans. A voxel-based lesion symptom mapping (VLSM) analysis adjusted for confounding variables was performed correlating cerebral sites of MS lesions with arousal and lubrication scores. RESULTS: Decreased arousal scores correlated with decreased lubrication scores; decreased lubrication scores were associated with bladder or urinary symptoms. Arousal and lubrication scores were not associated with any other variables. Multivariate VLSM analysis, including arousal and lubrication scores as covariables of interest, showed right occipital lesions associated with impaired arousal and left insular lesions associated with decreased lubrication. Impaired lubrication remained associated with left insular lesions after adjustment for bladder or urinary dysfunction. INTERPRETATION: Our data indicate that impaired female sexual arousal is associated with MS lesions in the occipital region, integrating visual information and modulating attention toward visual input. Impaired lubrication correlated with lesions in the left insular region, contributing to mapping and generating visceral arousal states

    Antihyperalgesia by α2-GABAA Receptors Occurs Via a Genuine Spinal Action and Does Not Involve Supraspinal Sites

    Get PDF
    Drugs that enhance GABAergic inhibition alleviate inflammatory and neuropathic pain after spinal application. This antihyperalgesia occurs mainly through GABAA receptors (GABAARs) containing α2 subunits (α2-GABAARs). Previous work indicates that potentiation of these receptors in the spinal cord evokes profound antihyperalgesia also after systemic administration, but possible synergistic or antagonistic actions of supraspinal α2-GABAARs on spinal antihyperalgesia have not yet been addressed. Here we generated two lines of GABAAR-mutated mice, which either lack α2-GABAARs specifically from the spinal cord, or, which express only benzodiazepine-insensitive α2-GABAARs at this site. We analyzed the consequences of these mutations for antihyperalgesia evoked by systemic treatment with the novel non-sedative benzodiazepine site agonist HZ166 in neuropathic and inflammatory pain. Wild-type mice and both types of mutated mice had similar baseline nociceptive sensitivities and developed similar hyperalgesia. However, antihyperalgesia by systemic HZ166 was reduced in both mutated mouse lines by about 60% and was virtually indistinguishable from that of global point-mutated mice, in which all α2-GABAARs were benzodiazepine insensitive. The major (α2-dependent) component of GABAAR-mediated antihyperalgesia was therefore exclusively of spinal origin, whereas supraspinal α2-GABAARs had neither synergistic nor antagonistic effects on antihyperalgesia. Our results thus indicate that drugs that specifically target α2-GABAARs exert their antihyperalgesic effect through enhanced spinal nociceptive control. Such drugs may therefore be well-suited for the systemic treatment of different chronic pain conditions

    Are clinical measures of foot posture and mobility associated with foot kinematics when walking?

    Get PDF
    Background: There is uncertainty as to which foot posture measures are the most valid in terms of predicting kinematics of the foot. The aim of this study was to investigate the associations of clinical measures of static foot posture and mobility with foot kinematics during barefoot walking. Method: Foot posture and mobility were measured in 97 healthy adults (46 males, 51 females; mean age 24.4 ± 6.2 years). Foot posture was assessed using the 6-item Foot Posture Index (FPI), Arch Index (AI), Normalised Navicular Height (NNHt) and Normalised Dorsal Arch Height (DAH). Foot mobility was evaluated using the Foot Mobility Magnitude (FMM) measure. Following this, a five-segment foot model was used to measure tri-planar motion of the rearfoot, midfoot, medial forefoot, lateral forefoot and hallux. Peak and range of motion variables during load acceptance and midstance/propulsion phases of gait were extracted for all relative segment to segment motion calculations. Hierarchical regression analyses were conducted, adjusting for potential confounding variables. Results: The degree of variance in peak and range of motion kinematic variables that was independently explained by foot posture measures was as follows: FPI 5 to 22 %, NNHt 6 to 20 %, AI 7 to 13 %, DAH 6 to 8 %, and FMM 8 %. The FPI was retained as a significant predictor across the most number of kinematic variables. However, the amount of variance explained by the FPI for individual kinematic variables did not exceed other measures. Overall, static foot posture measures were more strongly associated with kinematic variables than foot mobility measures and explained more variation in peak variables compared to range of motion variables. Conclusions: Foot posture measures can explain only a small amount of variation in foot kinematics. Static foot posture measures, and in particular the FPI, were more strongly associated with foot kinematics compared with foot mobility measures. These findings suggest that foot kinematics cannot be accurately inferred from clinical observations of foot posture alone

    Valsalva maneuver unveils central baroreflex dysfunction with altered blood pressure control in persons with a history of mild traumatic brain injury

    Get PDF
    BACKGROUND: Patients with a history of mild TBI (post-mTBI-patients) have an unexplained increase in long-term mortality which might be related to central autonomic dysregulation (CAD). We investigated whether standardized baroreflex-loading, induced by a Valsalva maneuver (VM), unveils CAD in otherwise healthy post-mTBI-patients. METHODS: In 29 healthy persons (31.3 ± 12.2 years; 9 women) and 25 post-mTBI-patients (35.0 ± 13.2 years, 7 women, 4–98 months post-injury), we monitored respiration (RESP), RR-intervals (RRI) and systolic blood pressure (BP) at rest and during three VMs. At rest, we calculated parameters of total autonomic modulation [RRI-coefficient-of-variation (CV), RRI-standard-deviation (RRI-SD), RRI-total-powers], of sympathetic [RRI-low-frequency-powers (LF), BP-LF-powers] and parasympathetic modulation [square-root-of-mean-squared-differences-of-successive-RRIs (RMSSD), RRI-high-frequency-powers (HF)], the index of sympatho-vagal balance (RRI LF/HF-ratios), and baroreflex sensitivity (BRS). We calculated Valsalva-ratios (VR) and times from lowest to highest RRIs after strain (VR-time) as indices of parasympathetic activation, intervals from highest systolic BP-values after strain-release to the time when systolic BP had fallen by 90 % of the differences between peak-phase-IV-BP and baseline-BP (90 %-BP-normalization-times), and velocities of BP-normalization (90 %-BP-normalization-velocities) as indices of sympathetic withdrawal. We compared patient- and control-parameters before and during VM (Mann-Whitney-U-tests or t-tests; significance: P < 0.05). RESULTS: At rest, RRI-CVs, RRI-SDs, RRI-total-powers, RRI-LF-powers, BP-LF-powers, RRI-RMSSDs, RRI-HF-powers, and BRS were lower in patients than controls. During VMs, 90 %-BP-normalization-times were longer, and 90 %-BP-normalization-velocities were lower in patients than controls (P < 0.05). CONCLUSIONS: Reduced autonomic modulation at rest and delayed BP-decrease after VM-induced baroreflex-loading indicate subtle CAD with altered baroreflex adjustment to challenge. More severe autonomic challenge might trigger more prominent cardiovascular dysregulation and thus contribute to increased mortality risk in post-mTBI-patients

    Generation of N

    No full text

    Spinal prostaglandin E receptors of the EP2 subtype and the glycine receptor alpha3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection

    Full text link
    Inflammation, peripheral nerve injury and chemical irritants can cause central sensitization in pain pathways. Prostaglandins produced in the CNS induce central sensitization during inflammation mainly by relieving nociceptive neurons from glycinergic inhibition. We have recently identified spinal prostaglandin E receptors of the EP2 subtype (EP2 receptors) and the glycine receptor alpha3 subunit (GlyR alpha3) as signal transduction elements involved in the generation of central inflammatory hyperalgesia. It is however still unknown to what extent inhibition of glycine receptors by PGE2 contributes to neuropathic or chemically induced pain. To address this question, we have analyzed mice deficient in the EP2 receptor (EP2-/- mice) or in the GlyR alpha3 subunit (GlyR alpha3-/- mice) using the chronic constriction injury (CCI) model of neuropathic pain and the formalin test. We found that EP2-/- mice and GlyR alpha3-/- mice develop thermal and mechanical hyperalgesia in the CCI model indistinguishable from that seen in wild-type mice. In the formalin test, EP2-/- mice, but not GlyR alpha3-/- mice, exhibited reduced nocifensive behavior. The lack of a phenotype in GlyR alpha3-/- mice together with the absence of a facilitating effect of intrathecal PGE2 on formalin-induced nociception in wild-type mice suggests that peripheral rather than spinal EP2 receptors are involved. These results indicate that inhibition of glycinergic neurotransmission by EP2 receptor activation does not contribute to pain following peripheral nerve injury or chemical irritation with formalin. Our results thus provide further evidence that inflammatory hyperalgesia and neuropathic pain involve different mechanisms of central sensitization

    Memory performance of past public events depends on retrieval frequency but not remoteness in Alzheimer's disease

    No full text
    Background Patients with Alzheimer's disease (AD) typically develop retrograde amnesia. But whereas some studies found a better preservation of older memories than more recent ones, others could not detect such a temporal gradient (TG). Therefore the views of involvement of the in AD early affected hippocampus in the storage and retrieval of declarative knowledge are ambiguous. In two previous studies we investigated autobiographical memory and remembrance of historic events in patients with AD. While we could show a clear TG in recall of autobiographical information, we did not find a TG for knowledge concerning public events in the same patients with AD. We concluded that recall of more frequently retrieved memories as older autobiographical incidents becomes more independent of the hippocampal formation than more seldomly retrieved remembrances. Consequently, we investigated memory retrieval of past public events in patients with AD in dependency of retrieval frequency with functional magnetic resonance imaging (fMRI). Methods In 28 healthy controls (HC) and 26 patients with AD we assessed the remembrance of historic events of the last 60 years divided in 4 time segments. Retrieval frequency was operationalized by a paired comparison analysis. The events were matched head-to-head with each other and the subjects were required to estimate which of the two events was more often remembered during lifetime. In the scanner an imagination task was chosen as control task. Results As well for the HC group as for the patients with AD we could show a better remembrance of frequently retrieved historic events. No influence of time segment was found. Neuronal network of memory of historic events comprised hippocampus, parts of the medial temporal cortex, precuneus, gyrus angularis and medial prefrontal cortex. Brain activity in this network was reduced in AD. In both groups activity in hippocampus and precuneus increased with retrieval frequency but did not differ with time period. Conclusions The results of the present study suggest a dependency of memory performance on retrieval frequency accompanied by enhancement of brain activity in hippocampus and precuneus in HC and AD. Thus, we conclude that cognitive activities can delay the onset of memory decline in persons who develop AD
    corecore