10 research outputs found
Biomaterials for Building Skins
Bio-based materials are considered a promising resource for buildings in the twenty-first century due to their sustainability and versatility. They can be produced locally, with minimum transportation costs and in an ecological manner. This chapter describes the potential of biomaterials for use in façades. It presents several examples of natural resources, including innovative alternative materials that are suitable for implementation as a building skin. Novel products resulting from material modifications and functionalization are presented, including a brief discussion on their environmental impacts. Alternative strategies for optimal biomaterials' recycling, reuse, and other end-of-life strategies are presented and supported with case study examples
LCA-based optimization of wood utilization under special consideration of a cascading use of wood
Cascading, the use of the same unit of a resource in multiple successional applications, is considered as a viable means to improve the efficiency of resource utilization and to decrease environmental impacts. Wood, as a regrowing but nevertheless limited and increasingly in demand resource, can be used in cascades, thereby increasing the potential efficiency per unit of wood. This study aims to assess the influence of cascading wood utilization on optimizing the overall environmental impact of wood utilization. By combining a material flow model of existing wood applications both for materials provision and energy production - with an algebraic optimization tool, the effects of the use of wood in cascades can be modelled and quantified based on life cycle impact assessment results for all production processes. To identify the most efficient wood allocation, the effects of a potential substitution of non-wood products were taken into account in a part of the model runs. The considered environmental indicators were global warming potential, particulate matter formation, land occupation and an aggregated single score indicator. We found that optimizing either the overall global warming potential or the value of the single score indicator of the system leads to a simultaneous relative decrease of all other considered environmental impacts. The relative differences between the impacts of the model run with and without the possibility of a cascading use of wood were 7% for global warming potential and the single score indicator, despite cascading only influencing a small part of the overall system, namely wood panel production. Cascading led to savings of up to 14% of the annual primary wood supply of the study area. We conclude that cascading can improve the overall performance of a wood utilization system. (C) 2015 Elsevier Ltd. All rights reserved.FWN – Publicaties zonder aanstelling Universiteit Leide
Additives in Wood Products : Today and Future Development
Most wood products include additives. They may be preservatives to protect the wood against biological degradation or against fire, coatings for protection or to give the wood a more favourable aesthetic appearance, non-wood materials to improve the performance of the product and overcome weaknesses in the wood material, or plastics in combinations with wood residues to create new types of wood–plastic combinations. The global wood industry is, for example the largest user of adhesives; about 80 % of all wood and wood-based products involve some form of bonding and 70 % of the total volume of adhesives produced is consumed in the woodworking industry. Wood can thus be regarded as a composite consisting of wood-based materials combined with other materials to form an aggregate material. An example is plywood, in which veneers are joined with adhesive to form a flat panel. Other types of wood composites include various board products, structural composite timber and, furniture and joinery components, all including some form of bonding with adhesive. This situation obviously influences the way in which we should relate to wood products and their environmental impacts. This chapter gives a state-of-the-art presentation of different additives currently being used in wood products. This information is necessary for further studies on the influence that these additives have on the service life and on environmental aspects, and the limitations which they may impose on the reuse, recycling and upgrading of wood productsGodkänd; 2016; 20160401 (andbra)</p