616 research outputs found
The Dynactin Complex Enhances the Speed of Microtubule-Dependent Motions of Adenovirus Both Towards and Away from the Nucleus
Unlike transport vesicles or organelles, human adenovirus (HAdV) directly binds to the microtubule minus end-directed motor dynein for transport to the nucleus. The dynein cofactor dynactin enhances nuclear transport of HAdV and boosts infection. To determine if dynactin has a specific role in cytoplasmic trafficking of incoming HAdV on microtubules, we used live cell spinning disc confocal microscopy at 25 Hz acquisition frequency and automated tracking of single virus particles at 20–50 nm spatial resolution. Computational dissection by machine-learning algorithms extracted specific motion patterns of viral trajectories. We found that unperturbed cells supported two kinds of microtubule-dependent motions, directed motions (DM) and fast drifts (FD). DM had speeds of 0.2 to 2 μm/s and run lengths of 0.4 up to 7 μm, while FD were slower and less extensive at 0.02 to 0.4 μm/s and 0.05 to 2.5 μm. Dynactin interference by overexpression of p50/dynamitin or a coiled-coil domain of p150/Glued reduced the speeds and amounts of both center- and periphery-directed DM but not FD, and inhibited infection. These results indicate that dynactin enhances adenovirus infection by increasing the speed and efficiency of dynein-mediated virus motion to the nucleus, and, surprisingly, also supports a hereto unknown motor activity for virus transport to the cell periphery
The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport
Transport of large cargo through the cytoplasm requires motor proteins and polarized filaments. Viruses that replicate in the nucleus of post-mitotic cells use microtubules and the dynein/dynactin motor to traffic to the nuclear membrane, and deliver their genome through nuclear pore complexes (NPCs) into the nucleus. How virus particles (virions) or cellular cargo are transferred from microtubules to the NPC is unknown. Here, we analyzed trafficking of incoming cytoplasmic adenoviruses by single particle tracking and super-resolution microscopy. We provide evidence for a regulatory role of CRM1/XPO1 (chromosome-region-maintenance-1, exportin-1) in juxta-nuclear microtubule-dependent adenovirus transport. Leptomycin B (LMB) abolishes nuclear targeting of adenovirus. It binds to CRM1, precludes CRM1-cargo binding and blocks signal-dependent nuclear export. LMB-inhibited CRM1 did not compete with adenovirus for binding to the nucleoporin Nup214 at the NPC. Instead, CRM1 inhibition selectively enhanced virion association with microtubules, and boosted virion motions on microtubules less than about 2 µm from the nuclear membrane. The data show that the nucleus provides positional information for incoming virions to detach from microtubules, engage a slower microtubule-independent motility to the NPC and enhance infection
Emission of exoelectrons during oxidation of Cs via thermal activation of a metastable O<sup>-</sup><sub>2</sub> surface species
Exposure of Cs surfaces to O2 causes the emission of exoelectrons. With a Cs monolayer on Ru(0001) the maximum yield is observed with an already partly oxidized surface on which a metastable O-2 species could be identified. Thermally activated transformation (with an activation energy of 0.8 eV) of this phase leads to dissociation accompanied by exoelectron emission via Auger deexcitation
Recommended from our members
Conservation Plans for the Northern Spotted Owl in Oregon: The Economic Implications of Changing Timber Availability
Recently released national forest plans and conservation plans for the protection of the northern spotted owl all call for a change in management direction on public forest lands in Oregon. The result will be a substantial reduction in public timber harvests in the state. This report summarizes how the conservation plans will influence Oregon's timber availability and economy in the context of overall changes in public land management. It details changes in timber availability, analyzes a range of potential outcomes on private land, provides geographical detail for harvest outlook, and outlines
the economic implications in terms of employment, income, and receipts to local governments
Recommended from our members
Conservation plans for the northern spotted owl and other forest management proposals in Oregon : the economics of changing timber availability
The goal of this study is to analyze how the ISC Conservation Strategy may influence Oregon's timber availability and economy in the context of overall changes in public land manÂagement. Two themes are important: first, how the state's future will differ from today and secÂond, how the state's future will be affected by reductions from recently observed harvest levels.
This report summarizes the history of timÂber harvests in Oregon, the role of the timber industry in Oregon's economy, and the implicaÂtions of changing timber availability for (1) Oregon's forest land allocation, (2) Oregon's harÂvests by owner and region, (3) Oregon's state economy in terms of jobs and payrolls in timber industries and other sectors of the economy, reÂceipts to local governments, and regional timber product prices, and (4) Oregon's communities in terms of jobs, wage and salary income, receipts to local governments, and potential dislocation of local citizens.Gerald W. Williams Collectio
Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35
The human adenovirus serotype 35 (HAdV-35, short Ad35) causes kidney and urinary tract infections, and infects respiratory organs of immunocompromised individuals. Unlike other adenoviruses, Ad35 has a low seroprevalence which makes Ad35-based vectors promising candidates for gene therapy. Ad35 utilizes CD46 and integrins as receptors for infection of epithelial and hematopoietic cells. Here, we show that infectious entry of Ad35 into HeLa, human kidney HK-2 cells and normal human lung fibroblasts strongly depended on CD46 and integrins but not heparan sulfate, and variably required the large GTPase dynamin. Ad35 infections were independent of expression of the carboxy-terminal domain of AP180 which effectively blocks clathrin-mediated uptake. Ad35 infections were inhibited by small chemicals against the serine/threonine kinase Pak1 (p21-activated kinase), protein kinase C (PKC), sodium-proton exchangers, actin and acidic organelles. Remarkably, the F-actin inhibitor jasplakinolide, the Pak1 inhibitor IPA-3 or the sodium-proton exchange inhibitor EIPA blocked the endocytic uptake of Ad35. Dominant-negative proteins or small interfering RNAs against factors driving macropinocytosis, including the small GTPase Rac1, Pak1 or the Pak1 effector C-terminal binding protein 1 (CtBP1) potently inhibited Ad35 infection. Confocal laser scanning microscopy, electron microscopy and live cell imaging showed that Ad35 colocalized with fluid phase markers in large endocytic structures that were positive for CD46, alpha v integrins and also CtBP1. Our results extend earlier observations with HAdV-3 (Ad3), and establish macropinocytosis as an infectious pathway for species B human adenoviruses in epithelial and hematopoietic cells
Evolution of the electronic structure from electron-doped to hole-doped states in the two-dimensional Mott-Hubbard system La1.17-xPbxVS3.17
The filling-controlled metal-insulator transition (MIT) in a two-dimensional
Mott-Hubbard system La1.17-xPbxVS3.17 has been studied by photoemission
spectroscopy. With Pb substitution x, chemical potential mu abruptly jumps by ~
0.07 eV between x=0.15 and 0.17, indicating that a charge gap is opened at x ~=
0.16 in agreement with the Mott insulating state of the d2 configuration. When
holes or electrons are doped into the Mott insulator of x ~= 0.16, the gap is
filled and the photoemission spectral weight at mu, rho(mu), gradually
increases in a similar way to the electronic specific heat coefficient,
although the spectral weight remains depressed around mu compared to that
expected for a normal metal, showing a pseudogap behavior in the metallic
samples. The observed behavior of varrho(mu)->0 for x->0.16 is contrasted with
the usual picture that the electron effective mass of the Fermi-liquid system
is enhanced towards the metal-insulator boundary. With increasing temperature,
the gap or the pseudogap is rapidly filled up, and the spectra at T=300 K
appears to be almost those of a normal metal. Near the metal-insulator
boundary, the spectra around mu are consistent with the formation of a Coulomb
gap, suggesting the influence of long-range Coulomb interaction under the
structural disorder intrinsic to this system.Comment: 8 pages, 12 figure
Differential Photoelectron Holography: A New Approach for Three-Dimensional Atomic Imaging
We propose differential holography as a method to overcome the long-standing
forward-scattering problem in photoelectron holography and related techniques
for the three-dimensional imaging of atoms. Atomic images reconstructed from
experimental and theoretical Cu 3p holograms from Cu(001) demonstrate that this
method suppresses strong forward-scattering effects so as to yield more
accurate three-dimensional images of side- and back-scattering atoms.Comment: revtex, 4 pages, 2 figure
Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2
We present high-resolution photoemission spectroscopy studies on the Kondo
resonance of the strongly-correlated Ce system CeCuSi. Exploiting the
thermal broadening of the Fermi edge we analyze position, spectral weight, and
temperature dependence of the low-energy 4f spectral features, whose major
weight lies above the Fermi level . We also present theoretical
predictions based on the single-impurity Anderson model using an extended
non-crossing approximation (NCA), including all spin-orbit and crystal field
splittings of the 4f states. The excellent agreement between theory and
experiment provides strong evidence that the spectral properties of
CeCuSi can be described by single-impurity Kondo physics down to K.Comment: 4 pages, 3 figure
- …