70 research outputs found

    Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging

    Get PDF
    The structural investigation of noncrystalline, soft biological matter using x-rays is of rapidly increasing interest. Large-scale x-ray sources, such as synchrotrons and x-ray free electron lasers, are becoming ever brighter and make the study of such weakly scattering materials more feasible. Variants of coherent diffractive imaging (CDI) are particularly attractive, as the absence of an objective lens between sample and detector ensures that no x-ray photons scattered by a sample are lost in a limited-efficiency imaging system. Furthermore, the reconstructed complex image contains quantitative density information, most directly accessible through its phase, which is proportional to the projected electron density of the sample. If applied in three dimensions, CDI can thus recover the sample's electron density distribution. As the extension to three dimensions is accompanied by a considerable dose applied to the sample, cryogenic cooling is necessary to optimize the structural preservation of a unique sample in the beam. This, however, imposes considerable technical challenges on the experimental realization. Here, we show a route toward the solution of these challenges using ptychographic CDI (PCDI), a scanning variant of coherent imaging. We present an experimental demonstration of the combination of three-dimensional structure determination through PCDI with a cryogenically cooled biological sample—a budding yeast cell (Saccharomyces cerevisiae)—using hard (7.9 keV) synchrotron x-rays. This proof-of-principle demonstration in particular illustrates the potential of PCDI for highly sensitive, quantitative three-dimensional density determination of cryogenically cooled, hydrated, and unstained biological matter and paves the way to future studies of unique, nonreproducible biological cells at higher resolution

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F′(un;un+1−un)=g−F(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    Multi-slice ptychographic tomography

    Get PDF
    Ptychography is a form of Coherent Diffractive Imaging, where diffraction patterns are processed by iterative algorithms to recover an image of a specimen. Although mostly applied in two dimensions, ptychography can be extended to produce three dimensional images in two ways: via multi-slice ptychography or ptychographic tomography. Ptychographic tomography relies on 2D ptychography to supply projections to conventional tomographic algorithms, whilst multi-slice ptychography uses the redundancy in ptychographic data to split the reconstruction into a series of axial slices. Whilst multi-slice ptychography can handle multiple-scattering thick specimens and has a much smaller data requirement than ptychographic tomography, its depth resolution is relatively poor. Here we propose an imaging modality that combines the benefits of the two approaches, enabling isotropic 3D resolution imaging of thick specimens with a small number of angular measurements. Optical experiments validate our proposed method

    3D diffractive imaging of nanoparticle ensembles using an X-ray laser

    Get PDF
    We report the 3D structure determination of gold nanoparticles (AuNPs) by X-ray single particle imaging (SPI). Around 10 million diffraction patterns from gold nanoparticles were measured in less than 100 hours of beam time, more than 100 times the amount of data in any single prior SPI experiment, using the new capabilities of the European X-ray free electron laser which allow measurements of 1500 frames per second. A classification and structural sorting method was developed to disentangle the heterogeneity of the particles and to obtain a resolution of better than 3 nm. With these new experimental and analytical developments, we have entered a new era for the SPI method and the path towards close-to-atomic resolution imaging of biomolecules is apparent

    Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging

    Get PDF
    Diffractive imaging, in which image-forming optics are replaced by an inverse computation using scattered intensity data, could, in principle, realize wavelength-scale resolution in a transmission electron microscope. However, to date all implementations of this approach have suffered from various experimental restrictions. Here we demonstrate a form of diffractive imaging that unshackles the image formation process from the constraints of electron optics, improving resolution over that of the lens used by a factor of five and showing for the first time that it is possible to recover the complex exit wave (in modulus and phase) at atomic resolution, over an unlimited field of view, using low-energy (30 keV) electrons. Our method, called electron ptychography, has no fundamental experimental boundaries: further development of this proof-of-principle could revolutionize sub-atomic scale transmission imaging

    Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers

    Get PDF
    The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX

    Counterion distribution near a monolayer of variable charge density

    No full text
    We study the bromide counterion distribution near a solid-supported monolayer in the case of vanishing bulk electrolyte concentration by resonant X-ray reflectivity. The surface charge density of the monolayer was varied by using different molar ratios of the cationic Di-Octadecyl-Di-methyl-Ammonium-Bromide (DODAB) and the neutral Di-Palmitoyl-Glycero-Phosphocholine (DPPC). The analysis, either based on a conventional box model with an additional counterion contribution, or based on an independent unbiased global optimization approach, yields a good agreement with the classical Poisson-Boltzmann theory for the salt-free case

    Ptychographic coherent x ray diffractive imaging in the water window

    No full text
    Coherent x-ray diffractive microscopy enables full reconstruction of the complex transmission function of an isolated object to diffraction-limited resolution without relying on any optical elements between the sample and detector. In combination with ptychography, also specimens of unlimited lateral extension can be imaged. Here we report on an application of ptychographic coherent diffractive imaging (PCDI) in the soft x-ray regime, more precisely in the so-called water window of photon energies where the high scattering contrast between carbon and oxygen is well-suited to image biological samples. In particular, we have reconstructed the complex sample transmission function of a fossil diatom at a photon energy of 517 eV. In imaging a lithographically fabricated test sample a resolution on the order of 50 nm (half-period length) has been achieved. Along with this proof-of-principle for PCDI at soft x-ray wavelengths, we discuss the experimental and technical challenges which can occur especially for soft x-ray PCDI
    • …
    corecore