88 research outputs found

    Flexible graph matching and graph edit distance using answer set programming

    Get PDF
    The graph isomorphism, subgraph isomorphism, and graph edit distance problems are combinatorial problems with many applications. Heuristic exact and approximate algorithms for each of these problems have been developed for different kinds of graphs: directed, undirected, labeled, etc. However, additional work is often needed to adapt such algorithms to different classes of graphs, for example to accommodate both labels and property annotations on nodes and edges. In this paper, we propose an approach based on answer set programming. We show how each of these problems can be defined for a general class of property graphs with directed edges, and labels and key-value properties annotating both nodes and edges. We evaluate this approach on a variety of synthetic and realistic graphs, demonstrating that it is feasible as a rapid prototyping approach.Comment: To appear, PADL 202

    Generating test case chains for reactive systems

    Get PDF
    Testing of reactive systems is challenging because long input sequences are often needed to drive them into a state to test a desired feature. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the amount of time required for resetting is high. This article presents an approach to discovering a test case chain—a single software execution that covers a group of test goals and minimizes overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimize the number of test case chains if a single test case chain is infeasible. We report experimental results with our ChainCover tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators

    Inferring Accountability from Trust Perceptions

    Get PDF
    International audienceOpaque communications between groups of data processors leave individuals out of touch with the circulation and use of their personal information. Empowering individuals in this regard requires sup-plying them — or auditors on their behalf — with clear data handling guarantees. We introduce an inference model providing individuals with global (organization-wide) accountability guarantees which take into account user expectations and varying levels of usage evidence, such as data handling logs. Our model is implemented in the IDP knowledge base system and demonstrated with the scenario of a surveillance infrastructure used by a railroad company. We show that it is flexible enough to be adapted to any use case involving communicating stakeholders for which a trust hierarchy is defined. Via auditors acting for them, individuals can obtain global accountability guarantees, providing them with a trust-dependent synthesis of declared and proven data handling practices for an entire organization

    Probably Approximately Correct Learning of Regulatory Networks from Time-Series Data

    Get PDF
    International audienceAutomating the process of model building from experimental data is a very desirable goal to palliate the lack of modellers for many applications. However, despite the spectacular progress of machine learning techniques in data analytics, classification, clustering and prediction making, learning dynamical models from data time-series is still challenging. In this paper we investigate the use of the Probably Approximately Correct (PAC) learning framework of Leslie Valiant as a method for the automated discovery of influence models of biochemical processes from Boolean and stochastic traces. We show that Thomas' Boolean influence systems can be naturally represented by k-CNF formulae, and learned from time-series data with a number of Boolean activation samples per species quasi-linear in the precision of the learned model, and that positive Boolean influence systems can be represented by monotone DNF formulae and learned actively with both activation samples and oracle calls. We consider Boolean traces and Boolean abstractions of stochastic simulation traces, and study the space-time tradeoff there is between the diversity of initial states and the length of the time horizon, and its impact on the error bounds provided by the PAC learning algorithms. We evaluate the performance of this approach on a model of T-lymphocyte differentiation, with and without prior knowledge, and discuss its merits as well as its limitations with respect to realistic experiments

    BWIBots: A platform for bridging the gap between AI and human–robot interaction research

    Get PDF
    Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human commands given in natural language, and (d) understand human intention from afar. The article concludes with a look forward towards future research opportunities and applications enabled by the BWIBot platform
    corecore