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ABSTRACT

The All-SAT (All-SATisfiable) problem focuses on finding all satis-

fiable assignments of a given propositional formula, whose ap-

plications include model checking, automata construction, and

logic minimization. A typical ALL-SAT solver is normally based

on iteratively computing satisfiable assignments of the given for-

mula. In this work, we introduce BASolver, a backbone-based

All-SAT solver for propositional formulas. Compared to the exist-

ing approaches, BASolver generates shorter blocking clauses by

removing backbone variables from the partial assignments and the

blocking clauses. We compare BASolver with 4 existing ALL-SAT

solvers, namely MBlocking, BC, BDD, and NBC. Experimental

results indicate that although finding all the backbone variables

consumes additional computing time, BASolver is still more ef-

ficient than the existing solvers because of the shorter blocking

clauses and the backbone variables used in it.

With the 608 formulas, BASolver solves the largest amount of

formulas (86), which is 22%, 36%, 68%, 86% more formulas than

MBlocking, BC, NBC, and BDD respectively. For the formulas that

are both solved by BASolver and the other solvers, BASolver uses

88.4% less computing time on average than the other solvers. For

the 215 formulas which first 1000 satisfiable assignments are found

by at least one of the solvers, BASolver uses 180% less computing

time on average than the other solvers.
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1 INTRODUCTION

The satisfiability problem is a typical NP-complete problem. The

problem is to decide whether a given propositional formula in Con-

junctive Normal Form (CNF) is satisfiable or not. The satisfiability

problem is ubiquitous in computer science and has attracted the

attention of many researchers because of its significant importance.

An SAT (SATisfiability) solver is a software toolkit that is able to

find a satisfiable assignment for a given satisfiable formula or an

unsatisfiable proof for a given unsatisfiable formula. Although the

complexity of SAT solving is NP-complete, modern SAT solvers are

still able to find a satisfiable assignment efficiently. With the devel-

opment of modern SAT solvers, propositional satisfiability theory

and satisfiable modulo theory have been widely applied to several

fields in computer science, including model checking [3, 4], pro-

gram analysis [2, 6, 22], network verification [28, 30, 42], quantifier

elimination [5] and predicate abstraction [23].

Some of the applications only need the SAT solver to find one

satisfiable assignment of the given formula or prove that the formula

is unsatisfiable, while other applications may require the SAT solver

to find multiple or even all the satisfiable assignments of the given

formula.

For example, in the field of network verification, the SAT solvers

are asked to find all the satisfiable assignments. Since most modern

networks are complex and contain multiple devices such as routers,

bridges, and firewalls. Device diversity together with erroneous

manual entry often lead to bugs that cause large downtime in

which valid packets are dropped, or invalid packets are let through.

Therefore, an ALL-SAT solver that computes all reachable packets

from a source to a destination is needed in network verification

[20, 28, 35, 42]. Lopes et al. [29] use the ALL-SAT solving technique

to compute all the reachable packets for a network. They generalize

the reachability verification tool to find all the states in the reachable

set. The ALL-SAT solving technique is also applied to the predicate

abstraction [7, 23], which is a technique to automatically extracting

finite-state abstractions in systems with potentially infinite state

space. For a formula and a set of predicates in a theory, Lahiri et

al. [24] use the ALL-SAT solver to enumerate all the models of the

formula over the predicates in the given theory and find the most

precise approximation model of the system. Another application

of the ALL-SAT technique is in the field of image computation

[13, 16, 25, 37] and symbolic model checking [31]. Gupta [17] et

al. compute all the solutions below intermediate points in the SAT

decision tree.

In this work, we focus on the applications of SAT theory that

require computing all the satisfiable assignments (ALL-SAT) of a

given formula, such as unbounded hardware model checking [27],

logic minimization [36], temporal logic planning [26], and knowl-

edge compilation [8]. Within these applications, the number of
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variables in the SAT formulas is usually large and the clauses are

usually complex. Therefore, the trivial method that blocks every

satisfiable assignment after finding it is inefficient.

There are mainly three methods to find all the satisfiable assign-

ments of a given formula, i.e., the blocking based strategy [31], the

backtracking based strategy [16] and the BDD (Binary Decision

Diagram) based strategy [40]. The key motivation of the block-

ing based strategy is to generate less and shorter blocking clauses

to block more satisfiable assignments. Once the blocking clauses

falsified the given formula, then all of the satisfiable assignments

are expressed by the negation of the blocking clauses. The back-

tracking based strategy backtracks to the previous decision level

inside a DPLL (Davis-Putnam-Logemann-Loveland) tree. Choos-

ing a good backtrack decision level is the key motivation of this

strategy. The BDD based strategy complied with the CNF formula

into a Binary Decision Diagram using the knowledge complication

techniques, and all the satisfiable assignments are generated by

traversing all the possible paths from the root node to the sink node

in the diagram.

When dealing with the formulas from these applications, the

existing blocking based strategies tend to generate large blocking

clauses that hinder the SAT solver from quickly finding a satisfiable

assignment. Furthermore, the choices of backtrack decision levels

are hard because the number of clauses in the formula is large. The

BDD itself tends to be too complex to traverse efficiently when the

number of clauses and variables is large. Therefore, existing ALL-

SAT solvers with these three strategies usually fail to find all the

satisfiable assignments of the formula generated from these appli-

cations. Due to the lack of proper ALL-SAT solver, the application

of SAT theory in these fields is limited.

In this work, we propose an ALL-SAT solver BASolver follow-

ing the blocking based strategy. But the generation of blocking

clauses in BASolver is different from the existing approaches. BA-

Solver first computes all the backbone variables and parts of the

satisfiable assignments of the given formula. At least one satisfiable

assignment is generated during the computing of the backbone

variables. Then BASolver uses the backbone variables to generate

the partial assignments and the blocking clauses from the known

satisfiable assignments. All backbone variables are removed from

the partial assignments. A clause ϕ in the formula is covered by a

variable x in the clause if x is assigned to True in the given satis-
fiable assignment. BASolver uses a greedy strategy to generate

the shortest partial assignment such that each clause in the given

formula is either covered by a backbone variable or a variable in the

partial assignment. Finally, the blocking clause is generated with

the negation of the partial assignment.

Comparing to the existing work, shorter blocking clauses are

obtained from the partial assignments in BASolver. There are

two advantages of removing backbone variables from the partial

assignments and the blocking clauses. Firstly, the complexity of

generating a partial assignment from the full satisfiable assignment

is O(n ×m), where n is the number of variables in the formula and
m is the number of clauses in the formula. By directly removing

backbone variables from the partial assignment, the variables that

need to be computed in the partial assignment generation is reduced.

When the number of clauses is large, the reduction is significant.

Secondly, with shorter blocking clauses, the SAT solver is able to

return a new satisfiable assignment quicker, especially when the

number of clauses is large. The experimental results show that with

the help of backbone variables, the SAT solving in BASolver is

much faster, and less computing time is needed to generate a given

amount of satisfiable assignments. The results also show that when

all the backbone variables are added as unit clauses to the formula,

BASolver is still more efficient thanks to the shorter blocking

clauses used in it.

BASolver uses MiniSAT v2.1.1 [11] as the underlying SAT solver.

We compared BASolver with 4 off-the-shelf ALL-SAT solvers, in-

cluding two blocking based tools, MBlocking [41] and BC, one

backtracking based tool, NBC, and one BDD based tool, BDD [39].

Among all the ALL-SAT solvers, BASolver solves (finds every as-

signment of the given formula) the largest number of formulas

(86 out of 608) within 10 hours and 64G memory. While 70, 63, 51

and 46 formulas are solved by MBlocking, BC, NBC and BDD,

respectively. For the formulas that are solved by both BASolver

and one of the comparing solvers, BASolver also uses 88.4% less

computing time than that used in the other solvers.

BASolver uses 24% less total computing time and 345% less

blocking time in finding the first 1000 satisfiable partial assignments

of a formula whose backbone variables are added as unit clauses.

For the 69 formulas whose variables are all backbone variables,

BASolver solves the most formulas with the least computing time

comparing to each of the solvers. More details of the experiments

are shown in Section 4.

The main contributions of our work are as follows:

• Wepropose an algorithm to compute all the satisfiable assign-

ments based on the backbone variables of the propositional

formula. It is the first application of the backbone variables

in the ALL-SAT solving problem.

• We propose a blocking based ALL-SAT solver BASolver to

compute all the satisfiable assignments of the given formula.

Comparing to the existing work, BASolver is more efficient

due to the use of the backbone variables, the use of shorter

partial assignments, and the use of shorter blocking clauses.

Experiments show that BASolver uses less computing time

among all the blocking based, backtracking based, and BDD

based ALL-SAT solvers.

The remainder of the paper is organized as follows. We describe

notations and preliminaries in Section 2. The algorithms of BA-

Solver are discussed in Section 3, experimental results are shown

in Section 4, and the related work is discussed in Section 5. We

conclude the paper in Section 6.

2 BACKGROUND

In this section, we present the necessary background on the satisfi-

ability problems and explain how backbone variables are identified.

We also discuss the straightforward blocking based methods to

compute all the satisfiable assignments and the backbone variables

of the given satisfiable formula.

2.1 The SAT and the ALL-SAT Problems

In this work, the propositional satisfiability formulas are described

in the Conjunction Normal Form (CNF), and the clauses are de-

scribed in the Disjunction Normal Form (DNF). Let X be a finite
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set of Boolean variables. A variable x ∈ X has two literals, x and
¬x , and the variable x is called the corresponding variable of the
literals. A clause ϕ is a disjunction of the literals

∨
li ∈ϕ li , which

is also represented as a set of literals {li | 1 ≤ i ≤ n}. A literal is

denoted as l ∈ ϕ if ϕ is consists of the literal l . A variable x is in a
clause ϕ if the literal x or the literal ¬x in the clause ϕ. A formula

Φ is a conjunction of the clauses
∧
li ∈ϕ ϕi . The formula Φ can also

be represented as a set of clauses {ϕi | 1 ≤ i ≤ n}. For clarity, we
use ϕ to denote a clause and Φ to denote a formula.

For every variable x ∈ Φ, Φx is the set of clauses that contain

either x or ¬x , i.e., ϕ ∈ Φx if and only if x ∈ ϕ or ¬x ∈ ϕ, and

Φ
p
x is the set of clauses that contain x , Φnx is the set of clauses that

contain ¬x .
Given a set of Boolean variables, an assignment v is a mappingv :

X→ {0, 1,−1}. The value of a Boolean variable x in an assignment
v is v(x). If v(x) = 1, then v(¬x) = 0. If v(x) = 1, then ¬v(x) = 0,
i.e., v(x) = ¬¬v(x). If v(x) = 1, v(¬x) = 0, if v(x) = 0, v(¬x) = 1,
i.e., v(x) = ¬v(¬x). If the value of x in v is −1, then the value of
¬x in v is also −1, i.e., v(¬x) = −1 if v(x) = −1. We also use the

conjunction of the literals whose value are 1 in an assignment v to

denote the v , for example, an assignment v(a) = 1 and v(b) = 0 is
also written asv = a∧¬b, where a and b are literals of the formula.

The value of ϕ under the assignment of v is 1 if and only if there

exists a literal l ∈ ϕ and v(l) = 1, denoted as v(ϕ) = 1 if and only if
∃l ∈ ϕ,v(l) = 1. For a clause ϕ and an assignment v , we say that
v |= ϕ if and only if v(ϕ) = 1. The value of Φ under the assignment

of v is 1 if and only if the value every clause ϕ ∈ Φ is 1, denoted as

v(Φ) = 1 if and only if ∀ϕ ∈ Φ,v |= ϕ, also written as v |= Φ if and

only if ∀ϕ ∈ Φ,v |= ϕ.
An assignment v is a full assignment of Φ if and only if there

does not exist a variable x ∈ Φ such that v(x) = −1. Otherwise, x is
a partial assignment. For a partial assignment vp , a full assignment
vf implies vp if for every variable x ∈ Φ, such that vp (x) � −1,
vf (x) = vp (x), denoted as vf → vp . If a full assignment implies a
partial assignment, then the full assignment can be expressed and

replaced by the partial assignment in the set of all the assignments.

An assignment λ is a satisfiable assignment (solution) of Φ if and

only if λ |= Φ. The ALL-SAT problem is to compute all the satisfiable

assignments of a given formula. Since the size of the satisfiable

assignments could be exponential, we use partial assignments to

express multiple full satisfiable assignments at the same time. For

a partial assignment vp , if every full assignment vf that implies
vp is a full satisfiable assignment, then vp is called a satisfiable

partial assignment and can be used to express the set of all the

assignments that implyvp , i.e.,vp express the set of full assignments
{vf |vf → vp ,vf |= Φ}.
Modern SAT solvers usually use the DPLL algorithm [10][9] to

find a satisfiable assignment. There are two kinds of variables during

the solving, the decision variables, and the implication variables.

The solver assigns 0 or 1 to the decision variables and checks if

there exist any variables that need to be assigned to 1 after the

current decision. If there exist such variables, these variables are

called implication variables, and 1 is assigned to them. During the

DPLL process, a conflict happens if there exists a clause that the

value of every literal in the clause is 0. The solver backtracks to

the previous decision level whenever a conflict occurs. If a conflict

occurs at the root level, that means the formula is unsatisfiable and

the current conflict is a proof of it.

SAT solvers also support the use of the assumptions. An assump-

tion is a set of literals that must be assigned to 1 in the satisfiable

assignment computed by the SAT solver. For a satisfiable formula Φ,
Φ∧ assu might be unsatisfiable. In this case, the SAT solver returns
a subset of assu indicating the reasons that Φ is not satisfiable under
the assumption of assu.
A straightforward blocking based method to compute all the

satisfiable assignments is to iteratively compute satisfiable assign-

ments. To avoid finding the same satisfiable assignment, the nega-

tions of the already known solutions is added to the formula. These

negations are called blocking clauses. Since a solution is a conjunc-

tion of unit literals, the negation of it is a disjunction of unit literals

(a clause), i.e., cλ =
∨
l λ(l) = 0. The formula Φ′ is updated with

Φ and the blocking clause c , i.e., Φ′ = Φ ∧ c , if Φ is unsatisfiable,

then all the satisfiable assignments are found. Otherwise a new

satisfiable assignment λ′ is found by the SAT solver Φ′ is updated
with Φ′ ∧ c ′

λ
until Φ′ is unsatisfiable. If a assignment λ |= Φ′ is

a satisfiable of Φ′ then λ is also a satisfiable assignment of Φ, i.e.,
λ |= Φ if λ |= Φ′. In this way, all the satisfiable assignments of Φ
are found by the SAT solver with the help of Φ′.
We show an example to illustrate the above definitions. For a

propositional satisfiable formula Φ = (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧
(a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c). The set of clauses that contain the
variable a is {a ∨ b ∨ c,a ∨ ¬b ∨ c,a ∨ b ∨ ¬c,a ∨ ¬b ∨ ¬c}, the set
of clauses that contain the literal ¬a is ∅. An assignment λ such
that λ(a) = 1, λ(b) = 1 and λ(c) = 1 is a satisfiable assignment of
λ. A partial assignment vp such that vp (a) = 1 is implied by λ, and
vp is a satisfiable partial assignment since all the full assignments
that imply vp is a satisfiable assignment of λ.
In an SAT solver with the given formula Φ, the variables a, b,

and c may be assigned to 1 as decision variables respectively. In an
ALL-SAT solver, suppose the first satisfiable assignment of Φ is λ
such that λ(a) = λ(b) = λ(c) = 1, then the blocking clause of λ is
¬a∨¬b ∨¬c and Φ′ = (a∨b ∨c)∧ (a∨¬b ∨c)∧ (a∨b ∨¬c)∧ (a∨
¬b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ ¬c). A new satisfiable assignment λ′ such
that λ′(a) = 1, λ′(b = 1) and λ′(c) = 0 is found by the SAT solver

and Φ′ is updated with Φ′ = Φ′ ∧ (¬a ∨¬b ∨ c). Eventually, Φ′ will
be updated to Φ′ = Φ ∧ (¬a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨
¬c) ∧ (¬a ∨ ¬b ∨ ¬c), and it is unsatisfiable. All the four satisfiable
assignments are λ1 = a ∧ b ∧ c , λ2 = a ∧ ¬b ∧ c , λ3 = a ∧ b ∧ ¬c
and λ4 = a ∧ ¬b ∧ ¬c .

2.2 The Backbone Variables

For a given satisfiable propositional formula Φ, a variable x ∈ Φ is a

backbone variable if the value of x in every satisfiable assignment
of Φ remains the same. For an unsatisfiable propositional formula,

there does not exist a backbone variable as there does not exist a

satisfiable assignment for the formula. A formal definition of the

backbone variable is as follows.

Definition 2.1 (The Backbone Variables). Given a satisfiable for-

mula Φ, a variable x is a backbone variable of Φ if and only if Φ∧ x
is unsatisfiable or Φ ∧ ¬x is unsatisfiable.
For a given formula Φ, a variable x ∈ Φ is either a backbone

variable or a non-backbone variable. For a non-backbone variable
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Figure 1: Workflow of BASolver

x of the given formula Φ, there must exist two different satisfiable
assignments of Φ such that λ1 |= Φ, λ2 |= Φ, λ1(x) � λ2(x).
A straightforward algorithm to compute all the backbone vari-

ables of a given formula Φ is to iteratively check the satisfiability of

Φ∧ x and Φ∧¬x for every variable x ∈ Φ. If either of the formulas
is unsatisfiable, then the variable x is a backbone variable.

For example, given a formulaΦ = (a∨b∨c)∧(a∨¬b∨c)∧(a∨b∨
¬c)∧(a∨¬b∨¬c), the variable a is a backbone variable since Φ∧¬a
is unsatisfiable. And both the variable b and c are non-backbone
variables, since Φ ∧ b ∧ c and Φ ∧ ¬b ∧ ¬c are satisfiable.

3 ALL-SAT SOLVER USING THE BACKBONE

VARIABLES

The workflow of BASolver is shown in Figure 1. There are mainly

two phases in BASolver, the backbone computing phase, and the

blocking phase. In the backbone computing phase, BASolver com-

putes all the backbone variables of the given formula Φ with the

EDUCIBone tool [43]. There are two parts in the output of EDUCI-

Bone, a complete set of backbone variables and a set of satisfiable

assignments. Notice that it only generates parts of the solutions,

but BASolver still benefits from these solutions as it does not need

to generate again. All the backbone variables of the given formula

Φ are in BL(Φ) and parts of the satisfiable assignments are in S(Φ).
The partial assignments of S(Φ) are generated and stored in Sp (Φ)
in the blocking phase.

In the blocking phase, BASolver takes the backbone variables,

the given formula and the given satisfiable assignments as the

inputs and generates the partial assignment pλ and the blocking
clause bcλ for each given satisfiable assignment λ ∈ Sp (Φ). The
blocking clause bcλ is the disjunction of the literals assigned to 0 in
the partial assignment pλ , i.e., bcλ =

∨
pλ (l )=0 l . Then the formula

Φ′ is updated with Φ ∧ bcλ and the partial assignment pλ is added
to the set of the partial assignments Sp (Φ). If the new formula Φ′ is
unsatisfiable, BASolver has found all the satisfiable assignments

of the given formula Φ. Otherwise, a new satisfiable assignment is

added to S(Φ). Then, BASolver computes the partial assignment
pλ′ and the blocking clause bcλ′ for the next satisfiable assignment
in Sp (Φ), and updates Φ′ with Φ′ ∧ bcλ′ . The partial assignment
pλ′ is added to Sp (Φ). The blocking phase only terminates when
Φ′ is unsatisfiable. Since the number of satisfiable assignments
of the formula Φ is finite, and Φ

∧
∀λ |=Φ bcλ is unsatisfiable, Φ′

will eventually become unsatisfiable in the blocking phase. When

BASolver terminates, all satisfiable assignments of Φ are expressed

by the negation of the blocking clauses in S(Φ).

3.1 Computing the Backbone Variables

We briefly introduce the algorithm we use in BASolver to compute

all the backbone variables. BASolver uses the EDUCIBone [43]

to compute the backbone variables, and the algorithm is shown in

Algorithm 1. The algorithm first initializes 5 arrays. The setw is the

set of the literals that have not been handled in the algorithm, the

set t is the set of the literals that need individual SAT solving. The

set bl is the set of the currently known backbone variables and the
set nbl is the set of the currently known non-backbone variables. S
is the set of the satisfiable assignments computed in Algorithm 1.

At first, the algorithm computes a satisfiable assignment of the

given formula Φ using SAT (Φ), if Φ is satisfiable, ret isTrue and the
satisfiable assignment is λ, otherwise c is the unsatisfiable reason
(if exits). If Φ is unsatisfiable, there is no backbone variable. If Φ is

satisfiable, every literal l of Φwhich has been assigned to 0 is added

tow , and λ is added to S . Then the algorithm iteratively handles the

literals in w . The variables in it are separated into groups, chunk
is the size of the group. Separating is very helpful in formulas

with large amount of variables. The chunk amount is 100 according
to the most efficient configuration in [43]. We also try different

chunk values in the experiments, but the performance difference
is small. For a group of literals assu, if Φ ∧ assu is satisfiable, then
the corresponding variable of every literal in assu is added to nbl ,
and the new assignment is added to S . Otherwise, if the size of the
unsatisfiable reason c is 1, then the corresponding variable of the
literal in c is added to bl and removed from assu. If the size of the
unsatisfiable reason c is greater than 1, then all the literals in c are
added to t and removed from assu. The algorithm then iteratively

check the satisfiability of Φ ∧ assu until it is satisfiable. Since the
size of assu is finite, assu will either become empty or Φ ∧ assu
becomes satisfiable. A new chunk of literals will be assigned to assu
when the computing of the current chunk is finished. When thew
set is empty, the algorithm starts to deal with the literal in the t set.
For each literal l ∈ t , if Φ ∧ l is satisfiable, then the corresponding
variable of l is a backbone variable, otherwise it is a non-backbone
variable.

3.2 Backbone Variables based Blocking Clauses

Computing

We then introduce the computing of the partial assignment and the

blocking clause (the blocking phase) based on a given satisfiable

assignment λ of the given formula Φ and all the backbone variables

of Φ.
For a satisfiable formula Φ and a backbone variable x , if the value

of x in every satisfiable assignment of Φ is 1, then the satisfiable

assignments of Φ and Φ ∧ x are the same. It means that if a as-

signment λ |= Φ, then λ |= Φ ∧ x , and if λ 	 |= Φ, then λ 	 |= Φ ∧ x .
Therefore, for a formulaΦ and backbone variables ofΦ in BL(Φ), the
result of ALL-SAT solver will not be changed by replacing Φ with

Φ
∧
l ∈BL(Φ),λ(l )=1 l . After replacing the formula Φ, we can remove

the backbone variables from all the satisfiable partial assignments

since the value of the backbone variables is already fixed by the new

9



ALGORITHM 1: Computing the Backbone Variables

Function backbone Φ
w = []; t = []; nbl = []; bl = []; S = [];

(ret, λ, c) = SAT(Φ);

if !ret then return ∅;
if ret then

S .add(λ);
foreach l ∈ Φ, λ(l) = 0 dow .add(l );
whilew .size() � 0 do

assu =w[0:chunk];

w .remove(assu);

(ret, λ, c) = SAT(Φ ∧ assu);

while !ret do
if c .size() == 1

end

then bl .add(c);

else t .add(c);

assu = assu.remove(c);

(ret, λ, c) = SAT(Φ ∧ assu);

nbl .add(assu);

S .add(λ);
end

foreach l ∈ t do
(ret,λ,c) = SAT(Φ ∧ l );
if ret then

nbl .add(l );

S .add(λ);
end

else bl .add(l );

end

end

return bl , S ;

end

formula. For a satisfiable partial assignment p, p contains all the
backbone variables ofΦ, althoughp′ is no longer a satisfiable partial
assignment after removing the backbone variables, we can easily

recover p from p′ as all the backbone variables of Φ are already

known. As we discussed before, shorter partial assignments will

lead to shorter blocking clauses and accelerate the ALL-SAT solving

procedure. Based on the above observation, Algorithm 2 computes

the shorter partial assignment and the blocking clause. The idea of

the algorithm is to compute the satisfiable partial assignment and

removes all the backbone variables from it.

With a given formula Φ, a satisfiable assignment λ |= Φ and

all the backbone variables BL(Φ) of Φ. Algorithm 2 first traverses

the non-backbone variables in λ, if the variable x is an implication
variable, then x is added to the array of the partial assignment p.
Based on the DPLL procedure in the MiniSAT Solver, if a variable

x is an implication variable, then there must exist at least a clause
ϕ of Φ such that either x or ¬x has to be assigned to 1 to make

ϕ satisfiable. Therefore, the implication variable x must exist in

the satisfiable partial assignment of λ. If the variable x is not an

implication variable, and the value of x in λ is 1, the algorithm

iteratively checks every clause ϕ such that l ∈ ϕ to see if l is the
only literal in ϕ which has been assigned to 1. If so, l is also in
the partial assignment. The algorithm checks the clauses in Φn

l
if

λ(l) = 0. For every literal added to p, the negation of the literal is
added to b.

After checking all the non-backbone variables, the partial assign-

mentp and the blocking clause c are generated. The time complexity
of Algorithm 2 is O(m × n × k), wherem,n,k are the number of

clauses, variables and satisfiable assignments of Φ. To reduce the
computing in Algorithm 2, we add a small optimization in the

BASolver tool. We compare the difference between two satisfi-

able assignment, and only the variables with different values are

computed.

ALGORITHM 2: Computing the Partial Assignment and the

Blocking Clause

Function blocking Φ, λ, BL(Φ)
b = []; p = [];

foreach x ∈ λ, x � BL(Φ) λ(x) = 1 or λ(¬x) = 1 do
if x is an implication variable then

p.add(x );

if λ(x) = 0 then b = b ∨ x ;

else b = b ∨ ¬x ;
end

else

if λ(x) = 0 then
foreach ϕ ∈ Φpx do

if 
l ∈ ϕ, λ(l) = 1 then
p.add(x );

b = b ∨ x ;
break;

end

end

end

if λ(x) = 1 then
foreach ϕ ∈ Φnx do

if 
l ∈ ϕ, λ(l) = 1 then
p.add(x );

b = b ∨ ¬x ;
break;

end

end

end

end

end

return p,b;

end

There are two advantages of removing the backbone variables

from the partial assignments. Firstly, the following SAT solving

is easier for the SAT solver since the size of the clauses has been

significantly reduced. Moreover, even the time complexity of the

computing the partial assignment and the blocking clause is in
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polynomial time, but it still could be time and memory consuming

when the formulas and the number of the satisfiable assignments

are large. By removing the backbone variables from the partial

assignments, we could save a large amount of computing time and

memory resources during the blocking phase. Experiments also

indicate that for a special group of the formulas, which only have

one satisfiable assignment, finding all the backbone variables is

generally faster than directly finding all the satisfiable assignments

using the existing ALL-SAT tools.

ALGORITHM 3: Computing all the Satisfiable Assignments

(BL(Φ), S) = backbone(Φ);
Sp = [];

Φ′ = Φ;
foreach λ ∈ S do

(p,b) = blocking(Φ, λ,BL(Φ));
Phi ′ = Φ′ ∧ b;
(ret, λ, c) = SAT (Φ; );
if ret then

S .add(λ′);
Sp .add(p);

end

else return Sp , BL(Φ);
end

After computing the partial assignments and the blocking clause

of the a given satisfiable assignment, we update the formula Φ to

Φ∧bc and continue finding the next satisfiable assignment of it. The
algorithm of BASolver is shown in Algorithm 3 with the function

of backbone(Φ) and blockinд(Φ, λ,BL(Φ)) introduced in Algorithm
1 and Algorithm 2.

For a given formula Φ, BASolver first computes the backbone
variables BL(Φ) of Φ, the satisfiable assignments generated during
the computing is in S . Then BASolver computes the partial assign-
ment p and the blocking clause b for every satisfiable assignment
λ in S . If Φ′ ∧ b is satisfiable, new satisfiable assignment is added

to S . The partial assignment of every satisfiable assignment in S
is added to Sp . If Φ

′ ∧ b is unsatisfiable, BASolver returns Sp and
BL(Φ). The satisfiable partial assignments are generated by adding
all the backbone variables back to each partial assignment in Sp .

4 EVALUATION

We implemented BASolver based on the EDUCIBone tool, fol-

lowing a blocking based strategy. We use the Minisat 2.2 as the

SAT solver. BASolver is implemented in C++ with approximately

1000 lines of code for the main algorithm. The experiments are con-

ducted on a cluster of Linux systems. The runtime limitation is 10

hours and the memory limit is 64GB. Only one formula is running

on a node of the cluster at one time, and no parallel techniques are

used during the experiments. BASolver uses the solve() interface
of the MiniSAT solver to solve formulas and the addClause() in-
terface to add new blocking clauses to the formula. It did not use

other incremental features of the MiniSAT solver. We evaluate the

efficiency of BASolver through multiple experiments, answering

the following research questions:

• RQ1: How effective is BASolver comparing to other ALL-

SAT solvers?

• RQ2: Is the shorter blocking clause really useful in the

ALL-SAT computing?

• RQ3: Is the percentage of the backbone variables in the
formulas related to the performance of BASolver? Is it cost-

effective to compute all the backbone variables first?

4.1 Experimental Setup

• Benchmarks and Evaluation Metrics. In a survey by Toda and
Soh [39], three sources benchmarks are used. The SAT competitions

of 2014, the SATLIB benchmark and the ISCAS85 libraries. We

extend the first source with benchmarks of SAT competitions from

2011 to 2017. We found that the link of the third source is no longer

accessible, and the formulas in the SATLIB libraries are either too

simple (all of the solvers finished within 1 second) or too hard

(none of the solver finishes). Therefore, we only uses the extended

first source as our benchmark. There are 1816 formulas in total,

552 out of which are known as unsatisfiable, 608 out of which

are satisfiable and the satisfiability of the rest remains unknown.

The final benchmark is consists of the 608 satisfiable formulas.

Among the 608 formulas, EDUCIBone is able to compute all the

backbone variables of 214 formulas. For the rest of the formulas,

computing one satisfiable assignment always spends most of the

time limitation, and finishing ALL-SAT computing using any solver

is unlikely possible for them.

For an SAT solver, such as MiniSAT, we say a formula is solved

by the SAT solver if it finds at least one satisfiable assignment of

the formula. For the ALL-SAT solvers, such as BASolver, we say

a formula is completely solved by the ALL-SAT solver if it finds

every satisfiable assignment of the formula, if the ALL-SAT solver

only finds parts of the satisfiable formula, we say it partially solved

the formula. We use the number of solved formulas and the average

computing time as metrics to evaluate the performance of the ALL-

SAT solvers. For the formulas that ALL-SAT solver are not able to

find all the satisfiable assignments, we use the average computing

time of fining the first 1000 satisfiable assignments as the metrics.

•Baseline Approaches. To conduct a complete and objective com-
parison between BASolver and the existing tools, we use 4 different

ALL-SAT solvers in the experiments. Among the public ALL-SAT

solvers with the available toolkit, these 4 performs the best.

The first ALL-SAT solver is MBlocking, it also uses the partial

assignments to express the full satisfiable assignments. The authors

propose three different strategies in MBlocking, All-Clauses, Non-

disjointing, and hybrid. We use the configuration of the hybrid

strategy since the authors claim that it performs the best. The

other three tools are all from a survey in the year 2016. In the

survey, Toda and Soh [39] conclude the existing ALL-SAT solving

algorithms and implemented them to ALL-SAT solvers. There are

different configurations used in these solvers, we use the default

configurations of these solvers. The second ALL-SAT solver is BC,

though is also uses the blocking based strategy. The last two ALL-

SAT solvers are NBC and BDD. NBC uses a backtracking based

strategy to find all the satisfiable assignments and BDD uses the

BDD-based strategy. All the last three ALL-SAT solver (BC, NBC
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Formulas AveVAR AveCL AveFST #AveSATInst BASolver MBlocking BC NBC BDD

dimacs(17) 680 17079 508.14 1 17 16 14 1 15

AProve(3) 8565 28931 7.32 78 3 2 2 2 0

complete(4) 600 27140 0.02 1 4 3 4 4 0

Encryption(17) 8616 82773 44.75 1 17 12 16 15 7

Manthey(25) 5179 23692 780 2.58 25 22 14 19 15

mp1(12) 16301 185948 630.41 305.75 12 10 9 6 8

Others(8) 11593 44557 325.19 1131 8 5 4 4 1

Total(86) 7323 393119 327.97 227.79 86 70 63 51 46

Table 1: Overall Performance of All-SAT Computing Tools

and BDD) changes the implementation of the MiniSAT solver while

BASolver and MBlocking use the MiniSAT solver as a black box.

Due to the strategies used in NBC and BDD, they do not use the

partial assignments to express the full satisfiable assignments, and

due to the implementation of BC, though it uses a blocking based

strategy, it also does not use the partial assignments to express the

full satisfiable assignments. The difference between the number of

the full satisfiable assignments and the number of partial assign-

ments that express them could be large. Therefore, the comparison

on the formulas which are not completely solved by any of the

5 ALL-SAT solvers are only conducted between BASolver and

MBlocking.

4.2 Results

• RQ1: How effective is BASolver comparing to other ALL-SAT

solvers? We show the formulas in groups that are at least solved by

one of the ALL-SAT solvers. The first column of Table 1 shows the

name of the groups. From the second to the fifth columns shows

the basic information of the formulas, including the average num-

ber of the variables (AveVAR), the average number of the clauses

(AveCL), the average computing time for the first satisfiable as-

signment (AveFST) and the average number of satisfiable formulas

(#AveSATInst). The average number of satisfiable formulas in the

dimacs, complete, and Encryption group is 1, indicating that all the

variables in these formulas are backbone variables. The average

number of satisfiable formulas in the Manthey group is also small,

indicating that most of the variables are backbone variables in these

formulas.

From the sixth to the tenth columns in Table 1 shows the number

of formulas in each group solved by BASolver, MBlocking, BC,

NBC, and BDD respectively. Figure 2 shows the comparison of the

formula numbers solved by the ALL-SAT solvers in different groups.

There are 8 groups of bars, indicating the groups of the formulas.

There are 5 bars in each of the groups, indicating the number of

solved formulas of the ALL-SAT solvers. The y-aixs shows the

number of the solved formula. The first bar in each group is always

the highest, it means that BASolver solves the most formulas in

all the groups. In total, BASolver solves 86 formulas, which is 22%

more than MBlocking solves, 36% more than BC solves, 68% more

than NBC solves, and 86% more than BDD solves. The results show

that BASolver solves more formulas than all the other 4 tools in a

given time limit.

Figure 2: Number of Solved Formulas of theALL-SAT solvers

Figure 3: Comparison of Computing Time among the 5

Solvers

Figure 3 shows the comparison of computing time time among

the 5 ALL-SAT solvers. Each bar shows the computing time of BA-

Solver to solve the formula. The computing time of MBlocking,

BC, NBC, and BDD are shown with the dot, cross, plus, and triangle,
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Figure 4: Comparison of the Computing Time between BA-

Solver and the Most Efficient Solver

respectively. For most of the formulas, BASolver uses less com-

puting time than the other 4 solvers since most of the shapes are

not drawn on the bars. The average computing time of BASolver

among the 86 formulas is 3882 seconds. For the 70 formulas that are

both solved by BASolver and MBlocking, BASolver needs 209%

less computing time than MBlocking does. For the 63 formulas

that are both solved by BASolver and BC, BASolver needs 2%

less computing time. For the 51 formulas that are both solved by

BASolver and NBC, BASolver needs 36% less computing time,

and for the 46 formulas that are both solved by BASolver and BDD,

BASolver needs 107% less computing time.

Figure 4 shows the comparison of the computing time between

BASolver and the 4 comparison solvers. The minimal computing

time for a formula among the 4 comparison solvers is used to com-

pare with BASolver. The red line denotes the computing time of

BASolver for each formula and the bars denote the comparison

computing time of the formulas. It shows that the performance be-

tween each side is similar, indicates a good versatility of BASolver.

The BASolver solvesmore formulas than the comparison solvers

with the given time limitation. For the formulas that are both solved

by BASolver and each of the comparison solver, BASolver uses

less computing time. Moreover, BASolver also shows good ver-

satility by a similar performance comparing to the most effective

solver, which is different for every different formula.

Answer to RQ1 :

BASolver solves more formulas within the given computing

limitation. And less computing time is used in BASolver for

solving the same formulas.

• RQ2: Is the shorter blocking clause really useful in the ALL-SAT
computing? Since the use of backbone information in the ALL-SAT

computing only has two consequences, shorter blocking clauses and

additional unit clauses with backbone variables. To answer RQ2, we

add the backbone variables as unit clauses to the original formulas.

We then compare the SAT solving time, the blocking time, and

the total computing time of finding the first 1000 satisfiable partial

assignments of each formula with the different solvers. The solving

time indicates the computing time consumed by theMiniSAT solver,

and the blocking time represents the computing time consumed by

the generation of the partial assignments and the blocking clauses.

Since it is difficult to separate the blocking and the solving process in

BC, NBC , and BDD, we only compare BASolver with MBlocking

in this experiment.

There are 214 formulas in which all the backbone variables are

found by EDUCIBone. Within 10 hours, and 64 GB memory limit,

BASolver finishes computing the first 1000 satisfiable partial as-

signments of 105 formulas and MBlocking finishes computing the

first 1000 satisfiable partial assignments of 94 formulas. All the 94

formulas finished by MBlocking are also finished by BASolver.

Among them, for 76 of the formulas, BASolver uses less block-

ing time, and for 64 of the formulas, MBlocking uses less solving

time. In total, the average computing time for the 94 formulas in

BASolver is 472 seconds, which is 24% less than MBlocking (615

seconds). The average blocking time of BASolver (138 seconds)

is 345% time less than that used in MBlocking (615 seconds). The

average solving time of BASolver is 333 seconds, which is similar

to that in MBlocking (339 seconds). Therefore, the more efficient

blocking process mainly contributes to the efficiency of BASolver.

Since all the variables are added as unit clauses to the given formula,

the shorter blocking clauses is the main reason that BASolver uses

less blocking time than MBlocking does.

Figure 5 shows the comparison of the blocking time, solving

time, and the total computing time used in finding the first 1000

satisfiable partial assignments for a formula. The red bars show the

blocking time used in BASolver, the blue bars show the solving

time used in BASolver, the green bars show the blocking time used

in MBlocking, and the yellow bars show the solving time used in

MBlocking. For most the formulas in the plot, the total computing

time used in BASolver is less than that used inMBlocking. Also, in

both of the solvers, the blocking process consumes more computing

time than the solving process, due to a large number of variables

and clauses in the formulas.

In this experiment, BASolver uses 345% less blocking time in

finding the first 1000 satisfiable partial assignments in each one of

the formulas. The shorter blocking clauses are useful in ALL-SAT

solving as they are the main difference between BASolver and

MBlocking within the experiment.

Answer to RQ2 :

The shorter blocking clauses lead to a less blocking time, which

is useful and efficient in the ALL-SAT solving.

• RQ3: Is the percentage of the backbone variables in the formu-
las related to the performance of BASolver? Is it cost-effective to

compute all the backbone variables first? For all the 5 solvers in

the experiments, more formulas are solved when there are more

backbone variables in the formulas. Nearly 75% of the formulas

solved by the 5 solvers have 100% percentage of backbone variables.

Figure 6 shows the computing comparison of the 5 solvers on the

formulas with a 100% percentage of backbone variables. The light

blue bars are the computing time of BASolver, and the light red

bars are the least computing time among the 4 comparing solvers

for the same formula. Notice that the lighter (red) bars starts from

13



Figure 5: Comparison of the Blocking and Solving Time be-

tween BASolver andMBlocking

Figure 6: Comparison of the Computing Time for the For-

mulas with 100% backbone variables

the top of the darker (blue) bars, which means that if that if BA-

Solver does not use the least computing time, the circles, dots, or

crosses might below the lighter bars. The dots, crosses, pluses, and

triangles represents the computing time of MBlocking, BC, NBC,

and BDD for the same formula, respectively. BASolver uses the

least total computing time among the 5 solvers. For almost half of

the formulas, BASolver needs the least computing time among all

the 5 solvers. It indicates that if only one solver is applied to these

formulas, BASolver is the most efficient one.

We choose the 64 formulas that both BASolver and MBlocking

finds the first 1000 satisfiable partial assignments to study the rela-

tion between the performance of BASolver and the percentage of

the backbone variables. The percentage of the backbone variable in

these formulas ranges from 0.001% to 99.7%, the average percentage

is 25.6%.

Figure 7 shows the comparison of the blocking, solving and com-

puting time between BASolver and MBlocking among the 64

formulas. The red plot shows the blocking time of MBlocking, and

Figure 7: Comparison of the Computing Time for the For-

mulas with Different Percentages of Backbone Variables

the blue plot shows the total computing time of MBlocking. From

bottom to tap, the yellow bars show the blocking time in BASolver,

the green bars show the solving time in BASolver, and the purple

bars show the backbone computing time in BASolver. For most of

the formulas, the blocking time used in BASolver is less than that

in MBlocking. The average blocking time in BASolver is 200%

times less than that in MBlocking. But due to the computing of

the backbone variables, for nearly 20 formulas, BASolver needs

more computing time to find the first 1000 satisfiable partial assign-

ments. For most of the formulas, less computing time is needed for

BASolver.

Figure 8 shows the comparison of the average computing time

between BASolver and MBlocking grouped by the percentage

of the backbone variables. MBlocking uses less computing time

when the percentage of backbone variables is 50%, 80%, and 90%.

This is because the 64 formulas are relatively more difficult to the

MiniSAT solver, more computing time are consumed when finding

all the backbone variables. When there are not enough satisfiable

assignments in the formulas with more backbone variables, the

time-consuming in the backbone computing phase becomes more

and more serious.

The general performance of BASolver comparing to the other

solvers is not affected by the percentage of the backbone variables.

But since there are less satisfiable assignments that exist when

the percentages of backbone variables are high, more formulas

are solved by all of the 5 solvers with more backbone variables in

the formulas. The experiments show that even though computing

all the backbone variables require additional computing time, but

BASolver uses less computing time for each of the partial assign-

ments in most formulas. For the formulas that all the variables are

backbone variables, the average computing time used in finding the

only satisfiable assignment in BASolver is less than that in each

of the comparing solvers. Therefore, computing all the backbone

variables in ALL-SAT solving is cost-effective. If there is only one

satisfiable assignment, BASolver is able to find it quickly after

computing all the backbone variables for most of the formulas. If

there are amount of the satisfiable assignments is large, the average
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Figure 8: Computing Time of BASolver and MBlocking for

Formulas with Different Percentage of Backbone Variables

computing time of each satisfiable assignment in BASolver is less

after computing all the backbone variables.

Answer to RQ3 :

All the 5 solvers solves more formulas when there are more back-

bone variables in the formulas, the percentage of the backbone

variables does not influence the general performance of BA-

Solver differently. Computing all the backbone variables of

the formulas is cost-effective for the formulas, especially for the

formulas with 100% percentage of backbone variables.

4.3 Limitations and Threats to Validity

Firstly, BASolver uses the MiniSAT solver [11] as a black box to

solve the propositional formulas, and use the unsatisfiable reasons

returned by the MiniSAT solver. There are SAT solvers that are

faster than MiniSAT and the reasons returned by MiniSAT may not

be most appropriate for ALL-SAT solving. Also, since BC, NBC and

BDD change the implementation inside the MiniSAT solver, we can

not compare with them in the second and third experiments. Sec-

ondly, different blocking clauses inside the same ALL-SAT solver

may also influence the performance of the ALL-SAT solver. In the

second and third experiments, we did not consider the order of

the satisfiable partial assignment. It is possible that some block-

ing clauses may accelerate the following SAT solving significantly.

Moreover, we only use the formulas from the industrial tracks of

SAT competitions. These formulas are generally more changeable

for the ALL-SAT solvers as more solving time is required. Although

there are 608 formulas, the number of formulas that solved by at

least one of the solver is still less than 100, and most of them have

less than 100 satisfiable assignments. We would like to choose some

formulas with more than 1000 satisfiable assignments and the aver-

age difficulty for the SAT solver. We hope that at least one of the

solvers will solve these formulas completely, and then we can com-

pare the scalability among the solvers. Lastly, since only satisfiable

formulas have backbone variables, BASolver is not applicable to

over-constrained unsatisfiable formula. Although normally the in-

put of ALL-SAT Solvers are satisfiable formulas, it is also promising

to study on the over-constrained formulas with the techniques in

BASolver.

5 RELATEDWORK

BASolver is a blocking based ALL-SAT solver and the greedy strat-

egy used in it to generate the partial assignments is from approaches

proposed by Morgado and Marques-Silva [33] and Yu et al. [41] .

Jin and Somenz [21] proposed a blocking based ALL-SAT solver.

It finds all the satisfiable assignments for a generic Boolean cir-

cuit using the blocking based framework. It can be directly used

in manipulations of the logic circuits such as complementing and

flattening. Gebser [14] et al. applied similar techniques to the enu-

meration of Answer Set Programming.

MBlocking [41] is another blocking based ALL-SAT solver that

uses a greedy strategy named Minimal Blocking to generate the

minimal set of blocking clauses. For a solution of the given formula,

MBlocking either uses the set of dominant variables based on the

clauses coverage or the set of decision variables and their corre-

sponding reason variables based on the search tree to generate the

blocking clauses. However, backbone variables may occur in the

minimal set of blocking clauses and actually can be removed. The

short blocking clause used in BASolver is more efficient than that

used in MBlocking, and the reduced length of the blocking clauses

is a key reason that BASolver computes more formulas with less

computing time than MBlocking does.

The main difference between blocking based and non-blocking

based solvers is the use of blocking clauses. In order to avoid finding

the already known solutions of the formula, blocking based tools

generate the blocking clauses of each known solution and add the

blocking clauses back to the solver. In the non-blocking based All-

SAT solvers [1, 25], backtrack techniques in the search tree are

used to find more solutions to the given formula. Once a solution

is found, the non-blocking based tools choose a decision level and

backtrack the search tree to that level. A Different decision is made

at that level and a new search path is generated based on the new

decision.

Jabbour [19] et al. proposed a non-blocking ALL-SAT solver. Af-

ter finding the first satisfiable assignment, it starts to run with the

restart configuration. When a conflict happens, the solver back-

tracks to the previous decision level and propagates with the conflict

reasons. Gebser [15] et al. proposes a new conflict-driven learning

algorithm that uses an elaborated backtracking scheme. The scheme

records all the decision variables after finding some projected solu-

tions. In this way, the scheme can be maintained in the polynomial

space and only a linear number of solution-excluding constraints

are used. Grumberg [16] et al. introduced the notion of sub-levels

and presented a sub-level based first UIP scheme that was compati-

ble with the non-blocking approaches. Gebser [14] et al. presents

alternative conflict resolution by means of non-chronological back-

tracking with a backtrack level limitation.

NBC [39] is a non-blocking based tool that backtracks the search

tree to find every solution of the given formula. There are 4 differ-

ent backtrack strategies in NBC, and by using these strategies in

different orders, there are 8 different strategies in total in NBC. Each

strategy performs differently on the formulas, therefore, the choice

of strategies is a challenge for NBC. Comparing to NBC, BASolver
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only uses one strategy which is the short blocking clauses obtained

by backbone variables to find every solution of the formula.

Formula caching technique associated with concise graph repre-

sentations of propositional theories is also applied in the ALL-SAT

solving field, including FBDD (Free Binary Decision Diagrams),

OBDD (Ordered Binary Decision Diagrams) and d-DNNF (determin-

istic Decomposable Negation Normal Form). Such a representation

is able to be efficiently constructed while executing an exhaustive

DPLL search. A connection to All-SATwasmentioned in Huang and

Darwiche [18]. An application to All-SAT solving itself was more ex-

plicitly mentioned in Toda and Tsuda [40] and a compilation-based

All-SAT solver has been released.

Besides formula caching, the dualization of the Boolean func-

tions could also be applied to the ALL-SAT solving. Given a DNF

(Disjunction Normal Form) formula of a Boolean function, the ALL-

SAT problems for the function transfer to the problem of computing

the complete DNF formula for the dual function [12, 34, 38].

Another related topic is #SAT counting, which counts the total

number of all the satisfiable assignments. Some of the approaches

in the #SAT field use similar blocking techniques that are also used

in ALL-SAT solvers, but the state-of-the-art #SAT approach is based

on the universal hashing technique [32] which can not be applied

to the ALL-SAT solvers.

6 CONCLUSION

We propose an All-SAT solver BASolver which uses backbone

information to get shorter blocking clauses and achieve higher effi-

ciency. Comparing to other All-SAT solvers, BASolver removes

backbone variables from the blocking clauses. With shorter block-

ing clauses, the complexity of the following SAT solving decreases,

the number of SAT solving needed decreases and the efficiency of

All-SAT computing improves. Experiments show that BASolver is

an efficient ALL-SAT solver, the shorter blocking clauses used in it

leads to a reduction of the computing time. Although computing

all the backbone variables requires additional computing time, but

it is cost-effective since the average computing time of each sat-

isfiable assignment is reduced in BASolver. Also, all the solvers

in the experiments solve more formulas when the percentage of

the backbone variables is higher, but the percentage does not affect

BASolver differently.
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