49,380 research outputs found

    Directional genetic differentiation and asymmetric migration

    Get PDF
    Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. Since information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this paper. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.Comment: 25 pages, 8 (+3) figures, 1 tabl

    Probing the circulation of ring-shaped Bose-Einstein condensates

    Get PDF
    This paper reports the results of a theoretical and experimental study of how the initial circulation of ring-shaped Bose-Einstein condensates (BECs) can be probed by time-of-flight (TOF) images. We have studied theoretically the dynamics of a BEC after release from a toroidal trap potential by solving the 3D Gross-Pitaevskii (GP) equation. The trap and condensate characteristics matched those of a recent experiment. The circulation, experimentally imparted to the condensate by stirring, was simulated theoretically by imprinting a linear azimuthal phase on the initial condensate wave function. The theoretical TOF images were in good agreement with the experimental data. We find that upon release the dynamics of the ring--shaped condensate proceeds in two distinct phases. First, the condensate expands rapidly inward, filling in the initial hole until it reaches a minimum radius that depends on the initial circulation. In the second phase, the density at the inner radius increases to a maximum after which the hole radius begins slowly to expand. During this second phase a series of concentric rings appears due to the interference of ingoing and outgoing matter waves from the inner radius. The results of the GP equation predict that the hole area is a quadratic function of the initial circulation when the condensate is released directly from the trap in which it was stirred and is a linear function of the circulation if the trap is relaxed before release. These scalings matched the data. Thus, hole size after TOF can be used as a reliable probe of initial condensate circulation. This connection between circulation and hole size after TOF will facilitate future studies of atomtronic systems that are implemented in ultracold quantum gases.Comment: 9 pages, 9 figure

    Galactic Plane Hα\alpha Surveys: IPHAS & VPHAS+

    Full text link
    The optical Galactic Plane Hα\alpha surveys IPHAS and VPHAS+ are dramatically improving our understanding of Galactic stellar populations and stellar evolution by providing large samples of stars in short lived, but important, evolutionary phases, and high quality homogeneous photometry and images over the entire Galactic Plane. Here I summarise some of the contributions these surveys have already made to our understanding of a number of key areas of stellar and Galactic astronomy.Comment: 5 pages, 2 figures, refereed proceeding of the "The Universe of Digital Sky Surveys" conference, November 2014, to be published in the Astrophysics and Space Science Proceeding

    Control of unstable steady states by time-delayed feedback methods

    Full text link
    We show that time-delayed feedback methods, which have successfully been used to control unstable periodic ortbits, provide a tool to stabilize unstable steady states. We present an analytical investigation of the feedback scheme using the Lambert function and discuss effects of both a low-pass filter included in the control loop and non-zero latency times associated with the generation and injection of the feedback signal.Comment: 8 pages, 11 figure

    The dust emission of high-redshift quasars

    Full text link
    The detection of powerful near-infrared emission in high redshift (z>5) quasars demonstrates that very hot dust is present close to the active nucleus also in the very early universe. A number of high-redshift objects even show significant excess emission in the rest frame NIR over more local AGN spectral energy distribution (SED) templates. In order to test if this is a result of the very high luminosities and redshifts, we construct mean SEDs from the latest SDSS quasar catalogue in combination with MIR data from the WISE preliminary data release for several redshift and luminosity bins. Comparing these mean SEDs with a large sample of z>5 quasars we could not identify any significant trends of the NIR spectral slope with luminosity or redshift in the regime 2.5 < z < 6 and 10^45 < nuL_nu(1350AA) < 10^47 erg/s. In addition to the NIR regime, our combined Herschel and Spitzer photometry provides full infrared SED coverage of the same sample of z>5 quasars. These observations reveal strong FIR emission (L_FIR > 10^13 L_sun) in seven objects, possibly indicating star-formation rates of several thousand solar masses per year. The FIR excess emission has unusally high temperatures (T ~ 65 K) which is in contrast to the temperature typically expected from studies at lower redshift (T ~ 45 K). These objects are currently being investigated in more detail.Comment: 6 pages, 3 figures, to appear in the proceedings to "The Central Kiloparsec in Galactic Nuclei (AHAR2011)", Journal of Physics: Conference Series (JPCS), IOP Publishin

    Improved high-temperature resistant matrix resins

    Get PDF
    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer

    Magnetic Flux Tube Reconnection: Tunneling Versus Slingshot

    Full text link
    The discrete nature of the solar magnetic field as it emerges into the corona through the photosphere indicates that it exists as isolated flux tubes in the convection zone, and will remain as discrete flux tubes in the corona until it collides and reconnects with other coronal fields. Collisions of these flux tubes will in general be three dimensional, and will often lead to reconnection, both rearranging the magnetic field topology in fundamental ways, and releasing magnetic energy. With the goal of better understanding these dynamics, we carry out a set of numerical experiments exploring fundamental characteristics of three dimensional magnetic flux tube reconnection. We first show that reconnecting flux tubes at opposite extremes of twist behave very differently: in some configurations, low twist tubes slingshot while high twist tubes tunnel. We then discuss a theory explaining these differences: by assuming helicity conservation during the reconnection one can show that at high twist, tunneled tubes reach a lower magnetic energy state than slingshot tubes, whereas at low twist the opposite holds. We test three predictions made by this theory. 1) We find that the level of twist at which the transition from slingshot to tunnel occurs is about two to three times higher than predicted on the basis of energetics and helicity conservation alone, probably because the dynamics of the reconnection play a large role as well. 2) We find that the tunnel occurs at all flux tube collision angles predicted by the theory. 3) We find that the amount of magnetic energy a slingshot or a tunnel reconnection releases agrees reasonably well with the theory, though at the high resistivities we have to use for numerical stability, a significant amount of magnetic energy is lost to diffusion, independent of reconnection.Comment: 21 pages, 15 figures, submitted to Ap

    Limitations for change detection in multiple Gabor targets

    Get PDF
    We investigate the limitations on the ability to detect when a target has changed, using Gabor targets as simple quantifiable stimuli. Using a partial report technique to equalise response variables, we show that the log of the Weber fraction for detecting a spatial frequency change is proportional to the log of the number of targets, with a set-size effect that is greater than that reported for visual search. This is not a simple perceptual limitation, because pre-cueing a single target out of four restores performance to the level found when only one target is present. It is argued that the primary limitation on performance is the division of attention across multiple targets, rather than decay within visual memory. However in a simplified change detection experiment without cueing, where only one target of the set changed, not only was the set size effect still larger, but it was greater at 2000 msec ISI than at 250 msec ISI, indicating a possible memory component. The steepness of the set size effects obtained suggests that even moderate complexity of a stimulus in terms of number of component objects can overload attentional processes, suggesting a possible low-level mechanism for change blindness
    • …
    corecore