1,798 research outputs found

    Detection of Excess Hard X-ray Emission from the Group of Galaxies HCG62

    Get PDF
    From the group of galaxies HCG62, we detected an excess hard X-ray emission in energies above 4\sim 4 keV with \A SCA. The excess emission is spatially extended up to 10\sim10' from the group center, and somewhat enhanced toward north. Its spectrum can be represented by either a power-law of photon index 0.8-2.7, or a Bremsstrahlung of temperature >6.3>6.3 keV. In the 2-10 keV range, the observed hard X-ray flux, (1.0±0.3)×1012(1.0\pm0.3)\times10^{-12} erg cm2^{-2} s1^{-1}, implies a luminosity of (8.0±2.0)×1041(8.0\pm2.0)\times10^{41} erg s1^{-1} for a Hubble constant of 50 km s1^{-1} Mpc1^{-1}. The emission is thus too luminous to be attributed to X-ray binaries in the memb er galaxies. We discuss possible origin of the hard X-ray emission.Comment: 6 pages, 3 Postscript figures, uses emulateapj.sty. Accepted for publication in the Astrophysical Journal Letter

    Suppression of Magnetic Order by Pressure in BaFe2As2

    Full text link
    We performed the dc resistivity and the ZF 75As-NMR measurement of BaFe2As2 under high pressure. The T-P phase diagram of BaFe2As2 determined from resistivity anomalies and the ZF 75As-NMR clearly revealed that the SDW anomaly is quite robust against P.Comment: 2 pages, 2 figure

    X-ray Measurements of the Gravitational Potential Profile in the Central Region of the Abell 1060 Cluster of Galaxies

    Full text link
    X-ray spectral and imaging data from ASCA and ROSAT were used to measure the total mass profile in the central region of Abell 1060, a nearby and relatively poor cluster of galaxies. The ASCA X-ray spectra, after correcting for the spatial response of the X-ray telescope, show an isothermal distribution of the intra-cluster medium (ICM) within at least \sim 12' (or 160h701160h_{70}^{-1} kpc; H0=70h70H_0 = 70 h_{70} km s1^{-1}Mpc1^{-1}) in radius of the cluster center. The azimuthally averaged surface brightness profile from the ROSAT PSPC exhibits a central excess above an isothermal β\beta model. The ring-sorted ASCA GIS spectra and the radial surface brightness distribution from the ROSAT PSPC were simultaneously utilized to constrain the gravitational potential profile. Some analytic models of the total mass density profile were examined. The ICM density profile was also specified by analytic forms. The ICM temperature distribution was constrained to satisfy the hydrostatic equilibrium, and to be consistent with the data. Then, the total mass distribution was found to be described better by the universal dark halo profile proposed by Navarro, Frenk, and White (1996;1997) than by a King-type model with a flat density core. A profile with a central cusp together with a logarithmic radial slope of 1.5\sim 1.5 was also consistent with the data. Discussions are made concerning the estimated dark matter distribution around the cluster center.Comment: 32 pages. Accepted: ApJ 2000, 35 pages, Title was correcte

    ASCA PV observations of the Seyfert 2 galaxy NGC 4388: the obscured nucleus and its X-ray emission

    Get PDF
    We present results on the Seyfert 2 galaxy NGC4388 in the Virgo cluster observed with ASCA during its PV phase. The 0.5-10 keV X-ray spectrum consists of multiple components; (1) a continuum component heavily absorbed by a column density NH = 4E23 cm-2 above 3 keV; (2) a strong 6.4 keV line (EW = 500 eV); (3) a weak flat continuum between 1 and 3 keV; and (4) excess soft X-ray emission below 1 keV. The detection of strong absorption for the hard X-ray component is firm evidence for an obscured active nucleus in this Seyfert 2 galaxy. The absorption corrected X-ray luminosity is about 2E42 erg/s. This is the first time that the fluorescent iron-K line has been detected in this object. The flat spectrum in the intermediate energy range may be a scattered continuum from the central source. The soft X-ray emission below 1 keV can be thermal emission from a temperature kT = 0.5 keV, consistent with the spatially extended emission observed by ROSAT HRI. However, the low abundance (0.05 Zs) and high mass flow rate required for the thermal model and an iron-K line stronger than expected from the obscuring torus model are puzzling. An alternative consistent solution can be obtained if the central source was a hundred times more luminous over than a thousand years ago. All the X-ray emission below 3 keV is then scattered radiation.Comment: 9 pages, 5 Postscript figures, to be published in MNRA

    XMM-Newton Observations of NGC 507: Super-solar Metal Abundances in the Hot ISM

    Full text link
    We present the results of the X-ray XMM-Newton observations of NGC 507, a dominant elliptical galaxy in a small group of galaxies, and report 'super-solar' metal abundances of both Fe and a-elements in the hot ISM of this galaxy. We find Z_Fe = 2-3 times solar inside the D25 ellipse of NGC 507. This is the highest Z_Fe reported so far for the hot halo of an elliptical galaxy; this high Iron abundance is fully consistent with the predictions of stellar evolution models, which include the yield of both type II and Ia supernovae. The spatially resolved, high quality XMM spectra provide enough statistics to formally require at least three emission components: two soft thermal components indicating a range of temperatures in the hot ISM, plus a harder component, consistent with the integrated output of low mass X-ray binaries (LMXBs). The abundance of a-elements (most accurately determined by Si) is also found to be super-solar. The a-elements to Fe abundance ratio is close to the solar ratio, suggesting that ~70% of the Iron mass in the hot ISM was originated from SNe Type Ia. The a-element to Fe abundance ratio remains constant out to at least 100 kpc, indicating that SNe Type II and Ia ejecta are well mixed in a scale much larger than the extent of the stellar body.Comment: 29 pages, 6 figures, Accepted in ApJ (v613, Oct. 1, 2004); Minor revisions after referee's comments; A high-resolution pdf file available at http://hea-www.harvard.edu/~kim/pap/N507_XMM.pd

    X-MAS2: Study Systematics on the ICM Metallicity Measurements

    Full text link
    (Abridged)The X-ray measurements of the ICM metallicity are becoming more frequent due to the availability of powerful X-ray telescope with excellent spatial and spectral resolutions. The information which can be extracted from the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with respect to the Iron abundance is extremely important to better understand the stellar formation and its evolutionary history. In this paper we investigate possible source of bias connected to the plasma physics when recovering metal abundances from X-ray spectra. To do this we analyze 6 simulated galaxy clusters processed through the new version of our X-ray MAp Simulator, which allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing the spectroscopic results to the input values we find that: i) Fe is recovered with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at intermediate temperatures, however, we find a systematic overestimate which depends on the number counts; ii) O is well recovered in cold clusters, while in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a weak line, the measurement of Mg is always difficult; despite of this, for cold systems (T<2 keV) we do not find any systematic behavior, while for very hot systems (T>5 keV) the spectroscopic measurement may be strongly overestimated up to a factor of 4; iv) Si is well recovered for all the clusters in our sample. We investigate in detail the nature of the systematic effects and biases found. We conclude that they are mainly connected with the multi-temperature nature of the projected observed spectra and to the intrinsic limitation of the XMM-Newton EPIC spectral resolution that does not always allow to disentangle among the emission lines produced by different elements.Comment: (e.g.: 17 pages, 8 figures, accepted for publication in the Astrophysical Journal, updated discussion to match published version-new section:6.3
    corecore