104 research outputs found

    Influence of opioids on immune function in patients with cancer pain: from bench to bedside

    Get PDF
    In patients with cancer, opioids are principally used for the management of acute surgical and chronic cancer-related pain. However, opioids have many non-analgesic effects, including direct and indirect effects on cancer cells and on anti-tumour immunity (NK cells, macrophages and T-cells). Direct effects on immune cells are manifested via opioid and non-opioid toll-like receptors, whereas indirect effects are manifested via the sympathetic nervous system and hypothalamic–pituitary–adrenal axis. Opioids can also decrease/alter immune cell infiltration into the tumour micro-environment. Animal models have shown that this is not a class effect, in that morphine and fentanyl suppress NK cell cytotoxicity; buprenorphine does not affect NK cell cytotoxicity, whereas tramadol increases NK cell cytotoxicity, reducing metastasis. In healthy individuals, morphine suppresses and fentanyl enhances NK cell cytotoxicity. In patients undergoing surgery, fentanyl decreased and tramadol increased NK cell cytotoxicity; clinical outcomes were not determined. Meta-analyses of opioid-sparing surgical studies report an association between improved recurrence-free and/or overall survival with regional/neuraxial anaesthesia compared with systemic opioids. In patients receiving opioids for non-surgical cancer-related pain, morphine has variable effects on immunity; clinical outcomes were not assessed. Although there is a potential association between systemic opioid administration and shorter survival in cancer patients with a prognosis of months to years, studies have not been designed to primarily assess survival, as a consequence of which causality cannot be apportioned. Pain is immunosuppressive, so analgesia is important. Opioids for cancer-related pain will continue to be recommended until definitive data on the effects of opioids on clinical outcomes in specific patient groups becomes available

    Education and service : how theories can help in understanding tensions

    Get PDF
    Acknowledgements: our thanks to Ayelet Kuper for a helpfuldiscussion about the possible application of discourseanalysis to service–training tensionsPeer reviewedPostprin

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRÎČ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types
    • 

    corecore