776,448 research outputs found

    The use of active controls to augment rotor/fuselage stability

    Get PDF
    The use of active blade pitch control to increase helicopter rotor/body damping is studied. Control is introduced through a conventional nonrotating swashplate. State variable feedback of rotor and body states is used. Feedback parameters include cyclic rotor flap and lead-lag states, and body pitch and roll rotations. The use of position, rate, and acceleration feedback is studied for the various state variables. In particular, the influence of the closed loop feedback gain and phase on system stability is investigated. For the rotor/body configuration analyzed, rotor cyclic inplane motion and body roll-rate and roll-acceleration feedback can considerably augment system damping levels and eliminate ground resonance instabilities. Scheduling of the feedback state, phase, and gain with rotor rotation speed can be used to maximize the damping augmentation. This increase in lead-lag damping can be accomplished without altering any of the system modal frequencies. Investigating various rotor design parameters (effective hinge offset, blade precone, blade flap stiffness) indicates that active control for augmenting rotor/body damping will be particularly powerful for hingeless and bearingless rotor hubs

    Stationary and transient leakage current in the Pauli spin blockade

    Full text link
    We study the effects of cotunneling and a non-uniform Zeeman splitting on the stationary and transient leakage current through a double quantum dot in the Pauli spin blockade regime. We find that the stationary current due to cotunneling vanishes at low temperature and large applied magnetic field, allowing for the dynamical preparation of a pure spin ground state, even at large voltage bias. Additionally, we analyze current that flows between blocking events, characterized, in general, by a fractional effective charge ee^*. This charge can be used as a sensitive probe of spin relaxation mechanisms and can be used to determine the visibility of Rabi oscillations.Comment: v1: 4 pages; v2: 4 pages+ additional supplementary material, version to appear in PR

    Momentum space evolution of chiral three-nucleon forces

    Full text link
    A framework to evolve three-nucleon (3N) forces in a plane-wave basis with the Similarity Renormalization Group (SRG) is presented and applied to consistent interactions derived from chiral effective field theory at next-to-next-to-leading order (N2^2LO). We demonstrate the unitarity of the SRG transformation, show the decoupling of low and high momenta, and present the first investigation of universality in chiral 3N forces at low resolution scales. The momentum-space-evolved 3N forces are consistent and can be directly combined with the standard SRG-evolved two-nucleon (NN) interactions for ab-initio calculations of nuclear structure and reactions.Comment: 5 pages, 4 figure

    Pattern reconstruction and sequence processing in feed-forward layered neural networks near saturation

    Get PDF
    The dynamics and the stationary states for the competition between pattern reconstruction and asymmetric sequence processing are studied here in an exactly solvable feed-forward layered neural network model of binary units and patterns near saturation. Earlier work by Coolen and Sherrington on a parallel dynamics far from saturation is extended here to account for finite stochastic noise due to a Hebbian and a sequential learning rule. Phase diagrams are obtained with stationary states and quasi-periodic non-stationary solutions. The relevant dependence of these diagrams and of the quasi-periodic solutions on the stochastic noise and on initial inputs for the overlaps is explicitly discussed.Comment: 9 pages, 7 figure

    Vortex formation in a stirred Bose-Einstein condensate

    Full text link
    Using a focused laser beam we stir a Bose-Einstein condensate of 87Rb confined in a magnetic trap and observe the formation of a vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to four vortices are simultaneously present. We have also measured the lifetime of the single vortex state after turning off the stirring laser beam.Comment: 4 pages, 3 figure

    Thermal pump-compressor for space use Patent

    Get PDF
    Thermal pump-compressor for converting solar energ

    Computational Methods for Nucleosynthesis and Nuclear Energy Generation

    Get PDF
    This review concentrates on the two principle methods used to evolve nuclear abundances within astrophysical simulations, evolution via rate equations and via equilibria. Because in general the rate equations in nucleosynthetic applications form an extraordinarily stiff system, implicit methods have proven mandatory, leading to the need to solve moderately sized matrix equations. Efforts to improve the performance of such rate equation methods are focused on efficient solution of these matrix equations, by making best use of the sparseness of these matrices. Recent work to produce hybrid schemes which use local equilibria to reduce the computational cost of the rate equations is also discussed. Such schemes offer significant improvements in the speed of reaction networks and are accurate under circumstances where calculations with complete equilibrium fail.Comment: LaTeX2e with graphicx, 40 Pages with 5 embedded figures. To be published in Computational Astrophysics, The Journal of Computational and Applied Mathematics, eds. H. Riffert, K. Werne

    Silicon Burning I: Neutronization and the Physics of Quasi-Equilibrium

    Full text link
    As the ultimate stage of stellar nucleosynthesis, and the source of the iron peak nuclei, silicon burning is important to our understanding of the evolution of massive stars and supernovae. Our reexamination of silicon burning, using results gleaned from simulation work done with a large nuclear network (299 nuclei and more than 3000 reactions) and from independent calculations of equilibrium abundance distributions, offers new insights into the quasi-equilibrium mechanism and the approach to nuclear statistical equilibrium. We find that the degree to which the matter has been neutronized is of great importance, not only to the final products but also to the rate of energy generation and the membership of the quasi-equilibrium groups. A small increase in the global neutronization results in much larger free neutron fluences, increasing the abundances of more neutron-rich nuclei. As a result, incomplete silicon burning results in neutron richness among the isotopes of the iron peak much larger than the global neutronization would indicate. Finally, we briefly discuss the limitations and pitfalls of models for silicon burning currently employed within hydrodynamic models. In a forthcoming paper we will present a new approximation to the full nuclear network which preserves the most important features of the large nuclear network calculations at a significant improvement in computational speed. Such improved methods are ideally suited for hydrodynamic calculations which involve the production of iron peak nuclei, where the larger network calculation proves unmanageable.Comment: 44 pages of TeX with 25 Postscript figures, uses psfig.sty, To appear in the The Astrophysical Journal, April 1 1996. Complete PostScript version of the paper is also available from http://tycho.as.utexas.edu/~raph/Publications.htm
    corecore