2,909 research outputs found

    Vortices Clustering: The Origin of the Second Peak in the Magnetisation Loops of High Temperature Superconductors

    Full text link
    We study vortex clustering in type II Superconductors. We demonstrate that the ``second peak'' observed in magnetisation loops may be a dynamical effect associated with a density driven instability of the vortex system. At the microscopic level the instability shows up as the clustering of individual vortices at (rare) preferential regions of the pinning potential. In the limit of quasi-static ramping the instability is related to a phase transition in the equilibrium vortex system.Comment: 11 pages + 3 figure

    M5-brane geometries, T-duality and fluxes

    Full text link
    We describe a duality relation between configurations of M5-branes in M-theory and type IIB theory on Taub-NUT geometries with NSNS and RR 3-form field strength fluxes. The flux parameters are controlled by the angles between the M5-brane and the (T)duality directions. For one M5-brane, the duality leads to a family of supersymmetric flux configurations which interpolates between imaginary self-dual fluxes and fluxes similar to the Polchinski-Strassler kind. For multiple M5-branes, the IIB configurations are related to fluxes for twisted sector fields in orbifolds. The dual M5-brane picture also provides a geometric interpretation for several properties of flux configurations (like the supersymmetry conditions, their contribution to tadpoles, etc), and for many non-trivial effects in the IIB side. Among the latter, the dielectric effect for probe D3-branes is dual to the recombination of probe M5-branes with background ones; also, a picture of a decay channel for non-supersymmetric fluxes is suggested.Comment: 30 pages, 3 figure

    A covariant approach to general field space metric in multi-field inflation

    Full text link
    We present a covariant formalism for general multi-field system which enables us to obtain higher order action of cosmological perturbations easily and systematically. The effects of the field space geometry, described by the Riemann curvature tensor of the field space, are naturally incorporated. We explicitly calculate up to the cubic order action which is necessary to estimate non-Gaussianity and present those geometric terms which have not yet known before.Comment: (v1) 18 pages, 1 figure; (v2) references added, typos corrected, to appear in Journal of Cosmology and Astroparticle Physics; (v3) typos in (54), (62) and (64) correcte

    On-site correlation in valence and core states of ferromagnetic nickel

    Full text link
    We present a method which allows to include narrow-band correlation effects into the description of both valence and core states and we apply it to the prototypical case of nickel. The results of an ab-initio band calculation are used as input mean-field eigenstates for the calculation of self-energy corrections and spectral functions according to a three-body scattering solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle spectra show a remarkable agreement with photoemission data in terms of band width, exchange splitting, satellite energy position of valence states, spin polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR

    Solar neutrino-electron scattering as background limitation for double beta decay

    Full text link
    The background on double beta decay searches due to elastic electron scattering of solar neutrinos of all double beta emitters with Q-value larger than 2 MeV is calculated, taking into account survival probability and flux uncertainties of solar neutrinos. This work determines the background level to be [1-2]E-7 counts /keV/kg/yr, depending on the precise Q-value of the double beta emitter. It is also shown that the background level increases dramatically if going to lower Q-values. Furthermore, studies are done for various detector systems under consideration for next generation experiments. It was found that experiments based on loaded liquid scintillator have to expect a higher background. Within the given nuclear matrix element uncertainties any approach exploring the normal hierarchy has to face this irreducible background, which is a limitation on the minimal achievable background for purely calorimetric approaches. Large scale liquid scintillator experiments might encounter this problem already while exploring the inverted hierarchy. Potential caveats by using more sophisticated experimental setups are also discussed

    Enhanced electrical resistivity before N\'eel order in the metals, RCuAs2_2 (R= Sm, Gd, Tb and Dy

    Full text link
    We report an unusual temperature (T) dependent electrical resistivity(ρ\rho) behavior in a class of ternary intermetallic compounds of the type RCuAs2_2 (R= Rare-earths). For some rare-earths (Sm, Gd, Tb and Dy) with negligible 4f-hybridization, there is a pronounced minimum in ρ\rho(T) far above respective N\'eel temperatures (TN_N). However, for the rare-earths which are more prone to exhibit such a ρ\rho(T) minimum due to 4f-covalent mixing and the Kondo effect, this minimum is depressed. These findings, difficult to explain within the hither-to-known concepts, present an interesting scenario in magnetism.Comment: Physical Review Letters (accepted for publication

    The Highest Energy Neutrinos

    Full text link
    Measurements of the arrival directions of cosmic rays have not revealed their sources. High energy neutrino telescopes attempt to resolve the problem by detecting neutrinos whose directions are not scrambled by magnetic fields. The key issue is whether the neutrino flux produced in cosmic ray accelerators is detectable. It is believed that the answer is affirmative, both for the galactic and extragalactic sources, provided the detector has kilometer-scale dimensions. We revisit the case for kilometer-scale neutrino detectors in a model-independent way by focussing on the energetics of the sources. The real breakthrough though has not been on the theory but on the technology front: the considerable technical hurdles to build such detectors have been overcome. Where extragalactic cosmic rays are concerned an alternative method to probe the accelerators consists in studying the arrival directions of neutrinos produced in interactions with the microwave background near the source, i.e. within a GZK radius. Their flux is calculable within large ambiguities but, in any case, low. It is therefore likely that detectors that are larger yet by several orders of magnitudes are required. These exploit novel techniques, such as detecting the secondary radiation at radio wavelengths emitted by neutrino induced showers.Comment: 16 pages, pdflatex, 7 jpg figures, ICRC style files included. Highlight talk presented at the 30th International Cosmic Ray Conference, Merida, Mexico, 200

    Axionic dark energy and a composite QCD axion

    Full text link
    We discuss the idea that the model-independent (MI) axion of string theory is the source of quintessential dark energy. The scenario is completed with a composite QCD axion from hidden sector squark condensation that could serve as dark matter candidate. The mechanism relies on the fact that the hidden sector anomaly contribution to the composite axion is much smaller than the QCD anomaly term. This intuitively surprising scenario is based on the fact that below the hidden sector scale Λh\Lambda_h there are many light hidden sector quarks. Simply, by counting engineering dimensions the hidden sector instanton potential can be made negligible compared to the QCD anomaly term.Comment: 9 pages, 7 figure

    The Subdominant Curvaton

    Full text link
    We present a systematic study of the amplitude of the primordial perturbation in curvaton models with self-interactions, treating both renormalizable and non-renormalizable interactions. In particular, we consider the possibility that the curvaton energy density is subdominant at the time of the curvaton decay. We find that large regions in the parameter space give rise to the observed amplitude of primordial perturbation even for non-renormalizable curvaton potentials, for which the curvaton energy density dilutes fast. At the time of its decay, the curvaton energy density may typically be subdominant by a relative factor of 10^-3 and still produce the observed perturbation. Field dynamics turns out to be highly non-trivial, and for non-renormalizable potentials and certain regions of the parameter space we observe a non-monotonous relation between the final curvature perturbation and the initial curvaton value. In those cases, the time evolution of the primordial perturbation also displays an oscillatory behaviour before the curvaton decay.Comment: Acknowledgments of financial support added, no further change

    Ultra-High Energy Neutrino Fluxes: New Constraints and Implications

    Full text link
    We apply new upper limits on neutrino fluxes and the diffuse extragalactic component of the GeV gamma-ray flux to various scenarios for ultra high energy cosmic rays and neutrinos. As a result we find that extra-galactic top-down sources can not contribute significantly to the observed flux of highest energy cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce cosmic rays via interactions with relic neutrinos is practically ruled out if cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
    corecore