212 research outputs found

    A 15-Kiloparsec X-Ray Disk in the Elliptical Galaxy NGC 1700

    Get PDF
    We present Chandra observations of the young elliptical galaxy NGC 1700. The X-ray isophotes are highly flattened between semimajor axes of 30 and 80 arcseconds, reaching a maximum ellipticity of approximately 0.65 at 60 arcsec (15 kpc). The surface brightness profile in the spectrally soft, flattened region is shallower than that of the starlight, indicating that the emission comes from hot gas rather than stellar sources. The flattening is so extreme that the gas cannot be in hydrostatic equilibrium in any plausible potential. A likely alternative is that the gas has significant rotational support. A simple model, representing isothermal gas distributed about a particular angular momentum, can reproduce the X-ray morphology while staying consistent with stellar kinematics. The specific angular momentum of the gas matches that of the stars in the most isophotally distorted outer part of the galaxy, and its cooling time matches the time since the last major merger. We infer that the gas was acquired in that merger, which involved a pre-existing elliptical galaxy with a hot ISM. The hot gas carried the angular momentum of the encounter, and has since gradually settled into a rotationally flattened, cooling disk.Comment: 11 pages, 2 figures, AASTeX 5.0. Accepted for publication in The Astrophysical Journa

    X-ray and Radio Interactions in the Cores of Cooling Flow Clusters

    Get PDF
    We present high resolution ROSAT x-ray and radio observations of three cooling flow clusters containing steep spectrum radio sources at their cores. All three systems exhibit strong signs of interaction between the radio plasma and the hot intracluster medium. Two clusters, A133 and A2626, show enhanced x-ray emission spatially coincident with the radio source whereas the third cluster, A2052, exhibits a large region of x-ray excess surrounding much of the radio source. Using 3-D numerical simulations, we show that a perturbed jet propagating through a cooling flow atmosphere can give rise to amorphous radio morphologies, particularly in the case where the jet was ``turned off'' and allowed to age passively. In addition, the simulated x-ray surface brightness produced both excesses and deficits as seen observationally.Comment: 25 pages, 10 figures, accepted for publication in A

    A Cilia-inspired Closed-loop Sensor-actuator Array

    Get PDF
    © 2018, Jilin University. Cilia are finger-like cell-surface organelles that are used by certain varieties of aquatic unicellular organisms for motility, sensing and object manipulation. Initiated by internal generators and external mechanical and chemical stimuli, coordinated undulations of cilia lead to the motion of a fluid surrounding the organism. This motion transports micro-particles towards an oral cavity and provides motile force. Inspired by the emergent properties of cilia possessed by the pond organism P. caudatum, we propose a novel smart surface with closed-loop control using sensor-actuators pairings that can manipulate objects. Each vibrating motor actuator is controlled by a localised microcontroller which utilises proximity sensor information to initiate actuation. The circuit boards are designed to be plug-and-play and are infinitely up-scalable and reconfigurable. The smart surface is capable of moving objects at a speed of 7.2 millimetres per second in forward or reverse direction. Further development of this platform will include more anatomically similar biomimetic cilia and control

    How Abundant is Iron in the Core of the Perseus Cluster?

    Get PDF
    The analysis of Perseus data collected with the Medium Energy Concentrator Spectrometer (MECS) on board Beppo-SAX shows that the ratio of the flux of the 8 keV line complex (dominated by Fe KÎČ_{\beta} emission) over the 6.8 keV line complex (dominated by Fe Kα_{\alpha} emission) is significantly larger than predicted by standard thermal emission codes. Moreover the analysis of spatially resolved spectra shows that the above ratio decreases with increasing cluster radius. We find that, amongst the various explanations we consider, the most likely requires the plasma to be optically thick for resonant scattering at the energy of the Fe Kα_{\alpha} line. We argue that if this is the case, then measures of the iron abundance made using standard thermal emission codes, that assume optically thin emission, can significantly underestimate the true iron abundance. In the case of the core of Perseus we estimate the true abundance to be ∌\sim 0.9 solar in a circular region with radius of ∌60\sim 60 kpc and centered on NGC 1275. Finally we speculate that similar results may hold for the core of other rich clusters.Comment: 19 pages, 3 Postscript figure

    The relationship between the optical Halpha filaments and the X-ray emission in the core of the Perseus cluster

    Full text link
    NGC 1275 in the centre of the Perseus cluster of galaxies, Abell 426, is surrounded by a spectacular filamentary Halpha nebula. Deep Chandra X-ray imaging has revealed that the brighter outer filaments are also detected in soft X-rays. This can be due to conduction and mixing of the cold gas in the filaments with the hot, dense intracluster medium. We show the correspondence of the filaments in both wavebands and draw attention to the relationship of two prominent curved NW filaments to an outer, buoyant radio bubble seen as a hole in the X-ray image. There is a strong resemblance in the shape of the hole and the disposition of the filaments to the behaviour of a large air bubble rising in water. If this is a correct analogy, then the flow is laminar and the intracluster gas around this radio source is not turbulent. We obtain a limit on the viscosity of this gas.Comment: Accepted for publication in MNRA

    Evolution of Multiphase Hot Interstellar Medium in Elliptical Galaxies

    Get PDF
    We present the results of a variety of simulations concerning the evolution of multiphase (inhomogeneous) hot interstellar medium (ISM) in elliptical galaxies. We assume the gases ejected from stars do not mix globally with the circumferential gas. The ejected gas components evolve separately according to their birth time, position, and origin. We consider cases where supernova remnants (SNRs) mix with local ISM. The components with high metal abundance and/or high density cool and drop out of the hot ISM gas faster than the other components because of their high metal abundance and/or density. This makes the average metal abundance of the hot ISM low. Furthermore, since the metal abundance of mass-loss gas decreases with radius, gas inflow from outer region makes the average metal abundance of the hot ISM smaller than that of mass-loss gas in the inner region. As gas ejection rate of stellar system decreases, mass fraction of mass-loss gas ejected at outer region increases in a galaxy. If the mixing of SNRs is ineffective, our model predicts that observed [Si/Fe] and [Mg/Fe] should decrease towards the galactic center because of strong iron emission by SNRs. In the outer region, where the cooling of time of the ISM is long, the selective cooling is ineffective and most of gas components remain hot. Thus, the metal abundance of the ISM in this region directly reflects that of the gas ejected from stars. Our model shows that supernovae are not effective heating sources in the inner region of elliptical galaxies, because most of the energy released by them radiates. Therefore, cooling flow is established even if the supernova rate is high. Mixing of SNRs with ambient ISM makes the energy transfer between supernova explosion and ambient ISM more effective.Comment: 21 pages (AASTeX), 14 figures, accepted for publication in The Astrophysical Journa

    Diffuse Galactic Emission from Spinning Dust Grains

    Full text link
    Spinning interstellar dust grains produce detectable rotational emission in the 10-100 GHz frequency range. We calculate the emission spectrum, and show that this emission can account for the ``anomalous'' Galactic background component which correlates with 100um thermal emission from dust. Implications for cosmic background studies are discussed.Comment: 13 pages, 3 eps figures, uses aaspp4.sty . Accepted by Ap.J.Letters 97/12/09. Corrected typos and added 1 referenc

    Role of clusters of galaxies in the evolution of the metal budget in the Universe

    Full text link
    Using the guidelines on SN element production provided by XMM-Newton, we summarize the results of ASCA observations on the element abundance in groups and clusters of galaxies. We show that while the metal production in groups could be described by a stellar population with a standard local IMF, clusters of galaxies require a more top-heavy IMF. We attribute an excess heavy element production to an IMF evolution with redshift. Dating the galaxy formation in clusters by observations of the star-formation rate, we conclude that the IMF variations have occurred preferentially at z>~4. We further combine our metallicity measurements with the mass function of clusters to estimate the role of clusters in the evolution of the metal content of the Universe. We argue that at no epoch stars are a major container of metals, unless groups of galaxies are not representative for the star-formation. This lends further support for the reduced (0.6 solar) mass-averaged oxygen abundance in the stellar population.Comment: 8 pages, 2003, ApJ, 594, September 1 issu

    SDSS-RASS: Next Generation of Cluster-Finding Algorithms

    Get PDF
    We outline here the next generation of cluster-finding algorithms. We show how advances in Computer Science and Statistics have helped develop robust, fast algorithms for finding clusters of galaxies in large multi-dimensional astronomical databases like the Sloan Digital Sky Survey (SDSS). Specifically, this paper presents four new advances: (1) A new semi-parametric algorithm - nicknamed ``C4'' - for jointly finding clusters of galaxies in the SDSS and ROSAT All-Sky Survey databases; (2) The introduction of the False Discovery Rate into Astronomy; (3) The role of kernel shape in optimizing cluster detection; (4) A new determination of the X-ray Cluster Luminosity Function which has bearing on the existence of a ``deficit'' of high redshift, high luminosity clusters. This research is part of our ``Computational AstroStatistics'' collaboration (see Nichol et al. 2000) and the algorithms and techniques discussed herein will form part of the ``Virtual Observatory'' analysis toolkit.Comment: To appear in Proceedings of MPA/MPE/ESO Conference "Mining the Sky", July 31 - August 4, 2000, Garching, German

    Deep ROSAT-HRI observations of the NGC 1399/NGC 1404 region: morphology and structure of the X-ray halo

    Get PDF
    We present the analysis of a deep (167 ks) ROSAT HRI observation of the cD galaxy NGC 1399 in the Fornax cluster. Using both HRI and, at larger radii, archival PSPC data, we find that the radial behavior of the X-ray surface brightness profile is not consistent with a simple Beta model and suggests instead three distinct components. We use a multi-component bidimensional model to study in detail these three components that we identify respectively with the cooling flow region, the galactic and the cluster halo. From these data we derive a binding mass distribution in agreement with that suggested by optical dynamical indicators, with an inner core dominated by luminous matter and an extended dark halo differently distributed on galactic and cluster scales. The HRI data and a preliminary analysis of Chandra public data, allow us to detect significant density fluctuations in the halo. We discuss possible non-equilibrium scenarios to explain the hot halo structure, including tidal interactions with neighboring galaxies, ram stripping from the intra-cluster medium and merging events. In the innermost region of NGC 1399, the comparison between the X-ray and radio emission suggests that the radio emitting plasma is displacing and producing shocks in the hot X-ray emitting gas. We found that the NGC 1404 halo is well represented by a single symmetric Beta model and follows the stellar light profile within the inner 8 kpc. The mass distribution is similar to the `central' component of the NGC 1399 halo. At larger radii ram pressure stripping from the intra-cluster medium produces strong asymmetries in the gas distribution. Finally we discuss the properties of the point source population finding evidence of correlation between the source excess and NGC 1399.Comment: 34 pages in aastex5.0 format, including 28 B&W and 4 color figures. Uses LaTex packages: subfigure, lscape and psfig. Accepted for publication in ApJ. High resolution version can be found at: http://www.na.astro.it/~paolillo/publications.htm
    • 

    corecore